**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Algebraic number theory

Summary

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers x and y such that their sum, and the sum of their squares, equal two given numbers A and B, respectively:
Diophantine equations have been studied for thousands of years. For example, the solutions to the quadratic Diophantine equation x2 + y2 = z2 are given by the Pythagorean triples, originally solved by the Babylonians (1800 BC). Solutions to linear Diophantine equations, such as 26x + 65y = 13, may be found using the Euclidean algorithm (c. 5th century BC).
Diophantus' major work was the Arithmetica, of which only a portion has survived.
Fermat's Last Theorem was first conjectured by Pierre de Fermat in 1637, famously in the margin of a copy of Arithmetica where he claimed he had a proof that was too large to fit in the margin. No successful proof was published until 1995 despite the efforts of countless mathematicians during the 358 intervening years. The unsolved problem stimulated the development of algebraic number theory in the 19th century and the proof of the modularity theorem in the 20th century.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (13)

Related publications (4)

Related people (1)

Related concepts (176)

Related lectures (116)

MATH-417: Number theory II.b - selected topics

This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th

MATH-482: Number theory I.a - Algebraic number theory

Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg

MATH-488: Algebraic K-theory

Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a

Quadratic reciprocity

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is: Let p and q be distinct odd prime numbers, and define the Legendre symbol as: Then: This law, together with its supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form for an odd prime ; that is, to determine the "perfect squares" modulo .

Algebraic number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

Modularity theorem

The modularity theorem (formerly called the Taniyama–Shimura conjecture, Taniyama-Weil conjecture or modularity conjecture for elliptic curves) states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.

Abel Summation and Prime Number TheoryMATH-313: Number theory I.b - Analytic number theory

Introduces the Abel summation formula and its application in establishing various equivalent formulations of the Prime Number Theory.

Number Theory: CongruenceCS-101: Advanced information, computation, communication I

Covers congruence modulo m and arithmetic operations.

Primes in Arithmetic ProgressionMATH-313: Number theory I.b - Analytic number theory

Explores primes in arithmetic progression, focusing on L-functions, characters, and the divergence of the sum of 1 over p for p congruent to a modulo q.

We prove that every Schwartz function in Euclidean space can be completely recovered given only its restrictions and the restrictions of its Fourier transform to all origin-centered spheres whose radii are square roots of integers. In particular, the only Schwartz function which, together with its Fourier transform, vanishes on these spheres, is the zero function. We show that this remains true if we replace the spheres by surfaces or discrete sets of points which are sufficiently small perturbations of these spheres. In a complementary, opposite direction, we construct infinite dimensional spaces of Fourier eigenfunctions vanishing on on certain discrete subsets of those spheres. The proofs combine harmonic analysis, the theory of modular forms and algebraic number theory.

This thesis, which presents a new approach to the algebraic K-theory, is divided into two parts. The first one is devoted to the category of small simplicial categories. First, we construct a new model structure on sCat = [Δop,Cat] which is called the diagonal model structure, in reference to the diagonal model structure of Moerdijk on bisimplicial sets sSet2. Then we show that the new structure is proper and cellular. Note that this new model structure is not tensored and cotensored over the category of simplicial sets sSet in a manner consistent with the model structure. To remedy this, we use another model structure on sSet2 defined in the article of Cegarra and Remedios [3], which is equivalent to the Moerdijk structure. So we build a second new model structure on [Δop,Cat], which is cofibrantly generated, left proper, cellular and (co)tensored on sSet in a compatible way. Based on the work of [13], we construct the stable category of spectra (not symmetric) SpN(sCat*, Σ). It garantees the existence of Ω-spectra, which allows us to define thenotion of "weak Waldhausen category". The calculation of the simplicial enrichment map of the model category SpN(sCat*, Σ), leads to our new definition of algebraic K-theory of weak Waldhausen categories . The second part of this thesis is an attempt to generalize the previous results for enriched categories. First we begin by recalling the theory of ∞-categories and ∞-groupoids, based on the work of Joyal [14] and Lurie [18]. Then we make comparisons of ∞-categories with the category of simplicial sets equipped with the usual model structure. Our first result is the construction of a model structure on Top – Cat , the category of small categories enriched over the category of topological spaces Top, based on the work of Bergner [1] . The category Top – Cat is Quillen equivalent to sSet – Cat. Note that all objects in Top – Cat are fibrant ; this remark will play an important role in this theory. Our second result is the construction of a new model structure on the category of small simplicial categories enriched over Top, denoted by Top – sCat = [Δop,Top – Cat]. We show that this structure is proper and cellular. The fact that Top – sCat is not (co)tensored over sSet poses a barrier to defining the category of spectra SpN(sCat*, Σ).

Let K be a field with char(K) ≠ 2. The Witt-Grothendieck ring (K) and the Witt ring W (K) of K are both quotients of the group ring ℤ[𝓖(K)], where 𝓖(K) := K*/(K*)2 is the square class group of K. Since ℤ[𝓖(K)] is integral, the same holds for (K) and W(K). The subject of this thesis is the study of annihilating polynomials for quadratic forms. More specifically, for a given quadratic form φ over K, we study polynomials P ∈ ℤ[X] such that P([φ]) = 0 or P({φ}) = 0. Here [φ] ∈ (K) denotes the isometry class and {φ} ∈ W(K) denotes the equivalence class of φ. The subset of ℤ[X] consisting of all annihilating polynomials for [φ], respectively {φ}, is an ideal, which we call the annihilating ideal of [φ], respectively {φ}. Chapter 1 is dedicated to the algebraic foundations for the study of annihilating polynomials for quadratic forms. First we study the general structure of ideals in ℤ[X], which later on allows us to efficiently determine complete sets of generators for annihilating ideals. Then we introduce a more natural setting for the study of annihilating polynomials for quadratic forms, i.e. we define Witt rings for groups of exponent 2. Both (K) and W(K) are Witt rings for the square class group 𝓖(K). Studying annihilating polynomials in this more general setting relieves us to a certain extent from having to distinguish between isometry and equivalence classes of quadratic forms. In Section 1.1 we study the structure of ideals in R[X], where R is a principal ideal domain. For an ideal I ⊂ R[X] there exist sets of generators, which can be obtained in a natural way by considering the leading coefficients of elements in I. These sets of generators are called convenient. By discarding super uous elements we obtain modest sets of generators, which under certain assumptions are minimal sets of generators for I. Let G be a group of exponent 2. In Section 1.2 we study annihilating polynomials for elements of ℤ[G]. With the help of the ring homomorphisms Hom(ℤ[G],ℤ) it is possible to completely classify annihilating polynomials for elements of ℤ[G]. Note that an annihilating polynomial for an element f ∈ ℤ[G] also annihilates the image of f in any quotient of ℤ[G]. In particular, Witt rings for G are quotients of ℤ[G]. In Section 1.3 we use the ring homomorphisms Hom(ℤ[G],ℤ) to describe the prime spectrum of ℤ[G]. The obtained results can then be employed for the characterisation of the prime spectrum of a Witt ring R for G. Section 1.4 is dedicated to proving the structure theorems for Witt rings. More precisely, we generalise the structure theorems for Witt rings of fields to the general setting of Witt rings for groups of exponent 2. Section 1.5 serves to summarise Chapter 1. If R is a Witt ring for G, then we use the structure theorems to determine, for an element x ∈ R, the specific shape of convenient and modest sets of generators for the annihilating ideal of x. In Chapter 2 we study annihilating polynomials for quadratic forms over fields. More specifically, we first consider fields K, over which quadratic forms can be classified with the help of the classical invariants. Calculations involving these invariants allow us to classify annihilating ideals for isometry and equivalence classes of quadratic forms over K. Then we apply methods from the theory of generic splitting to study annihilating polynomials for excellent quadratic forms. Throughout Chapter 2 we make heavy usage of the results obtained in Chapter 1. Let K be a field with char(K) ≠ 2. Section 2.1 constitutes an introduction to the algebraic theory of quadratic forms over fields. We introduce the Witt-Grothendieck ring (K) and the Witt ring W(K), and we show that these are indeed Witt rings for 𝓖(K). In addition we adapt the structure theorems to the specific setting of quadratic forms. In Section 2.2 we introduce Brauer groups and quaternion algebras, and in Section 2.3 we define the first three cohomological invariants of quadratic forms. In particular we use quaternion algebras to define the Clifford invariant. In Section 2.4 we begin our actual study of annihilating polynomials for quadratic forms. Henceforth it becomes necessary to distinguish between isometry and equivalence classes of quadratic forms. We start by classifying annihilating ideals for quadratic forms over fields K, for which (K) and W(K) have a particularly simple structure. Subsequently we use calculations involving the first three cohomological invariants to determine annihilating ideals for quadratic forms over a field K such that I3(K) = {0}, where I(K) ⊂ W(K) is the fundamental ideal. Local fields, which are a special class of such fields, are studied in Section 2.5. By applying the Hasse-Minkowski Theorem we can then determine annihilating ideals of quadratic forms over global fields. Section 2.6 serves as an introduction to the elementary theory of generic splitting. In particular we introduce Pfister neighbours and excellent quadratic forms, which are the subjects of study in Section 2.7. We use methods from generic splitting to study annihilating polynomials for Pfister neighbours. The obtained result can be applied inductively to obtain annihilating polynomials for excellent quadratic forms. We conclude the section by giving an alternative, elementary approach to the study of annihilating polynomials for excellent forms, which makes use of the fact that (K) and W(K) are quotients of ℤ[𝓖(K)].