Čech cohomologyIn mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech. Let X be a topological space, and let be an open cover of X. Let denote the nerve of the covering. The idea of Čech cohomology is that, for an open cover consisting of sufficiently small open sets, the resulting simplicial complex should be a good combinatorial model for the space X.
Puppe sequenceIn mathematics, the Puppe sequence is a construction of homotopy theory, so named after Dieter Puppe. It comes in two forms: a long exact sequence, built from the mapping fibre (a fibration), and a long coexact sequence, built from the mapping cone (which is a cofibration). Intuitively, the Puppe sequence allows us to think of homology theory as a functor that takes spaces to long-exact sequences of groups. It is also useful as a tool to build long exact sequences of relative homotopy groups.
Immersion (mathematics)In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, f : M → N is an immersion if is an injective function at every point p of M (where TpX denotes the tangent space of a manifold X at a point p in X). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: The function f itself need not be injective, only its derivative must be. A related concept is that of an embedding.
Module (mathematics)In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.
Cellular homologyIn mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules. If is a CW-complex with n-skeleton , the cellular-homology modules are defined as the homology groups Hi of the cellular chain complex where is taken to be the empty set. The group is free abelian, with generators that can be identified with the -cells of . Let be an -cell of , and let be the attaching map.
Representation theoryRepresentation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
Injective objectIn mathematics, especially in the field of , the concept of injective object is a generalization of the concept of injective module. This concept is important in cohomology, in homotopy theory and in the theory of . The dual notion is that of a projective object. An in a is said to be injective if for every monomorphism and every morphism there exists a morphism extending to , i.e. such that . That is, every morphism factors through every monomorphism . The morphism in the above definition is not required to be uniquely determined by and .
Real projective spaceIn mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space. As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1.
Euler characteristicIn mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by (Greek lower-case letter chi). The Euler characteristic was originally defined for polyhedra and used to prove various theorems about them, including the classification of the Platonic solids.
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.