**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Module (mathematics)

Summary

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.
Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.
Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology.
Introduction and definition
Motivation
In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the modul

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (3)

Related publications (22)

Loading

Loading

Loading

Related concepts (128)

Related units (1)

Ring (mathematics)

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped wit

Vector space

In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scal

Commutative ring

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebr

Related courses (13)

Study the basics of representation theory of groups and associative algebras.

The students are going to solidify their knowledge of ring and module theory with a major emphasis on commutative algebra and a minor emphasis on homological algebra.

The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.

The starting point for this project is the article of Kathryn Hess [11]. In this article, a homotopic version of monadic descent is developed. In the classical setting, one constructs a category D(𝕋) of coalgebras in the Eilenberg-Moore category of algebras D𝕋 for a given monad 𝕋 on a category D. There is a canonical functor Can𝕃𝕋 from D to D(𝕋), and if Can𝕃𝕋 is fully faithful, then 𝕋 satisfies descent, while if Can𝕃𝕋 is an equivalence of categories, then 𝕋 satisfies effective descent [19]. In [11], these two conditions are replaced by a weaker one, that these hold only up to homotopy. This is achieved by working with model categories that are enriched over simplicial sets. Homotopic descent is then defined by demanding that each component in (Can𝕃𝕋)A,B : MapD(A,B) → MapD(𝕋) (Can𝕃𝕋(A), Can𝕃𝕋 (B)) be a weak equivalence of simplicial sets. A similar but stronger condition involving the path components in D(𝕋) expresses effective homotopic descent. The first goal of this project is to develop a framework of homotopic descent for model categories that are enriched over model categories other than simplicial sets. The most important examples we have in mind are chain complexes and spectra. In order to achieve this goal, we tried to determine the most general conditions that are sufficient and necessary to make the theory work. To ease the formulation, let us say that we are working with a model category D that is enriched over a monoidal model category V. The crucial constructions we need are realization, respectively totalization, of (co)simplicial objects in D. These functors have to be Quillen functors to ensure that they have the correct homotopical behaviour. This implies that there must exist a Quillen adjunction between V and simplicial sets. Furthermore, we need to be able to transfer the enrichment and (co)tensoring over V to an enrichment and (co)tensoring over simplicial sets. This forces the Quillen adjunction to be monoidal. Another main point that has to be adressed is the question, of whether the enrichment of D carries over to an enrichment of D𝕋 and D(𝕋) and how this enrichment behaves. It turns out that this works well under mild assumptions on V. This leads then to the definition of homotopic descent by requiring that each component in (Can𝕃𝕋)A,B : MapD(A,B) → MapD(𝕋) (Can𝕃𝕋(A), Can𝕃𝕋 (B)) be a weak equivalence in M and similarly for effective homotopic descent. Using this definition, the theorems in [11] carry over to this more general context. Although the conditions on V are rather constraining regarding the relation with simplicial sets, the cases of chain complexes and spectra are included. For the time being we do not see how the constraints on V could be weakened. The second goal of this project is to apply the theory of homotopic descent to concrete examples. A good source of examples is homotopic Grothendieck descent in the category of spectra, i.e., S-modules. Classical Grothendieck descent deals with the adjunction induced by a morphism φ : B → A of monoids in a monoidal category (M,Λ, S), – BΛ A : ModB ⇄ ModA : φ*, which in turn induces a monad 𝕋φ := φ*(– ΛB A) on ModB. We consider in particular the case when the morphism in question is the unit of an S-algebra E, η : S → E There is a close relationship between comodules over a Hopf algebroid and objects in D(𝕋η). Associated to η we have the canonical co-ring Wη := E ΛS E and an isomorphism between D(𝕋η) and the category of comodules over Wη in the category of S-modules. This relationship is explored in an analysis of the stable Adams spectral sequence, the construction of which heavily relies on the monadic properties of the functor η*(E ΛS –) and can therefore be expressed in terms of D(𝕋η). We construct a spectral sequence that generalizes the stable Adams spectral sequence to any stable pointed model category such as unbounded chain complexes. One can give a description of the E2-term as an Ext in D(𝕋η), E2s,t = ExtD(𝕋η) (Can(A), Can(B)). If the spectral sequences converges, it abuts to π⁎MapD(A,B η^), where Bη^ is the derived 𝕋η-completion of B, which agrees with the usual derived completion in well-known special cases. Furthermore, Bη^ := Tot B^•, and B^• is kind of a fibrant cosimplicial resolution of B. Furthermore, the language of relative homological algebra for modules and comodules generalizes to definitions for algebras in D𝕋η and coalgebras in D(𝕋η). This shows that the construction of the Adams spectral sequence works in a more general setting, where one applies a functor to an abelian category, for example π⁎, only at the end, to be able to do computations in homological algebra. This general Adams spectral sequence is closely related to the descent spectral sequence of [11], and we have clarified this relationship.

Let be a finite-dimensional semisimple Lie algebra over having rank l and let V be an irreducible finite-dimensional -module having highest weight λ. Computations of weight multiplicities in V, usually based on Freudenthal's formula, are in general difficult to carry out in large ranks or for λ with large coefficients (in terms of the fundamental weights). In this paper, we first show that in some situations, these coefficients can be “lowered” in order to simplify the calculations. We then investigate how this can be used to improve the aforementioned formula of Freudenthal, leading to a more efficient version of the latter in terms of complexity as well as to a way of dealing with certain computations in unbounded ranks. We conclude by illustrating the last assertion with a concrete example.

2017Let K be an algebraically closed field of characteristic $p\geq0$ and let $Y=SPin_{2n+1}(K) (n\geq3)$ be a simply connected simple algebraic group of type $B_n$ over $K$. Also let $X$ be the subgroup of type $D_n$, embedded in $Y$ in the usual way, as the derived subgroup of the stabilizer of a non-singular one-dimensional subspace of the natural module for $Y$. In this paper, we give a complete set of isomorphism classes of finite-dimensional, irreducible, rational $KY$-modules on which $X$ acts with exactly two composition factors, completing the work of Ford in [12].

2017Related lectures (58)