In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.
Let X be a topological space, and let be an open cover of X. Let denote the nerve of the covering. The idea of Čech cohomology is that, for an open cover consisting of sufficiently small open sets, the resulting simplicial complex should be a good combinatorial model for the space X. For such a cover, the Čech cohomology of X is defined to be the simplicial cohomology of the nerve. This idea can be formalized by the notion of a good cover. However, a more general approach is to take the direct limit of the cohomology groups of the nerve over the system of all possible open covers of X, ordered by refinement. This is the approach adopted below.
Let X be a topological space, and let be a presheaf of abelian groups on X. Let be an open cover of X.
A q-simplex σ of is an ordered collection of q+1 sets chosen from , such that the intersection of all these sets is non-empty. This intersection is called the support of σ and is denoted |σ|.
Now let be such a q-simplex. The j-th partial boundary of σ is defined to be the (q−1)-simplex obtained by removing the j-th set from σ, that is:
The boundary of σ is defined as the alternating sum of the partial boundaries:
viewed as an element of the free abelian group spanned by the simplices of .
A q-cochain of with coefficients in is a map which associates with each q-simplex σ an element of , and we denote the set of all q-cochains of with coefficients in by . is an abelian group by pointwise addition.
The cochain groups can be made into a cochain complex by defining the coboundary operator by:
where is the restriction morphism from to (Notice that ∂jσ ⊆ σ, but σ ⊆ ∂jσ.)
A calculation shows that
The coboundary operator is analogous to the exterior derivative of De Rham cohomology, so it sometimes called
the differential of the cochain complex.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central work for the study of sheaf cohomology is Grothendieck's 1957 Tôhoku paper. Sheaves, sheaf cohomology, and spectral sequences were introduced by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria.
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Covers the concept of Steenrod Squares and their applications in stable cohomology operations.
Covers the cup product in the cohomology of C2, showing how non-trivial elements are represented by cocycles.
Covers the cup product on cohomology, acyclic models, and the universal coefficient theorem.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
Let R be a semilocal Dedekind domain with fraction field F. It is shown that two hereditary R-orders in central simple F-algebras that become isomorphic after tensoring with F and with some faithfully flat etale R-algebra are isomorphic. On the other hand, ...
The Cartan formula encodes the relationship between the cup product and the action of the Steenrod algebra in F-p-cohomology. In this work, we present an effective proof of the Cartan formula at the cochain level when the field is F-2. More explicitly, for ...