Gauss's continued fractionIn complex analysis, Gauss's continued fraction is a particular class of continued fractions derived from hypergeometric functions. It was one of the first analytic continued fractions known to mathematics, and it can be used to represent several important elementary functions, as well as some of the more complicated transcendental functions. Lambert published several examples of continued fractions in this form in 1768, and both Euler and Lagrange investigated similar constructions, but it was Carl Friedrich Gauss who utilized the algebra described in the next section to deduce the general form of this continued fraction, in 1813.
Computational scienceComputational science, also known as scientific computing, technical computing or scientific computation (SC), is a division of science that uses advanced computing capabilities to understand and solve complex physical problems. This includes Algorithms (numerical and non-numerical): mathematical models, computational models, and computer simulations developed to solve sciences (e.
Proper mapIn mathematics, a function between topological spaces is called proper if s of compact subsets are compact. In algebraic geometry, the analogous concept is called a proper morphism. There are several competing definitions of a "proper function". Some authors call a function between two topological spaces if the of every compact set in is compact in Other authors call a map if it is continuous and ; that is if it is a continuous closed map and the preimage of every point in is compact.
Singularity functionSingularity functions are a class of discontinuous functions that contain singularities, i.e. they are discontinuous at their singular points. Singularity functions have been heavily studied in the field of mathematics under the alternative names of generalized functions and distribution theory. The functions are notated with brackets, as where n is an integer. The "" are often referred to as singularity brackets .
Conditional convergenceIn mathematics, a series or integral is said to be conditionally convergent if it converges, but it does not converge absolutely. More precisely, a series of real numbers is said to converge conditionally if exists (as a finite real number, i.e. not or ), but A classic example is the alternating harmonic series given by which converges to , but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem.
Numerical errorIn software engineering and mathematics, numerical error is the error in the numerical computations. It can be the combined effect of two kinds of error in a calculation. the first is caused by the finite precision of computations involving floating-point or integer values the second usually called truncation error is the difference between the exact mathematical solution and the approximate solution obtained when simplifications are made to the mathematical equations to make them more amenable to calculation.
Itô diffusionIn mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.
Geometric measure theoryIn mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfaces that are not necessarily smooth. Geometric measure theory was born out of the desire to solve Plateau's problem (named after Joseph Plateau) which asks if for every smooth closed curve in there exists a surface of least area among all surfaces whose boundary equals the given curve.
Gamma functionIn mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n, Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles.
Spectral theoremIn mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces.