In mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n, Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1/Γ(z) is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential function: Other extensions of the factorial function do exist, but the gamma function is the most popular and useful. It is a component in various probability-distribution functions, and as such it is applicable in the fields of probability and statistics, as well as combinatorics. The gamma function can be seen as a solution to the following interpolation problem: "Find a smooth curve that connects the points (x, y) given by y = (x − 1)! at the positive integer values for x." A plot of the first few factorials suggests that such a curve can be drawn, but it would be preferable to have a formula that precisely describes the curve, in which the number of operations does not depend on the size of x. The simple formula for the factorial, x! = 1 × 2 × ⋯ × x, cannot be used directly for non-integer values of x since it is only valid when x is a natural number (or positive integer). There are, relatively speaking, no such simple solutions for factorials; no finite combination of sums, products, powers, exponential functions, or logarithms will suffice to express x!; but it is possible to find a general formula for factorials using tools such as integrals and limits from calculus.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (32)
MATH-100(a): Advanced analysis I - real analysis
Etude des concepts fondamentaux de l'analyse, calcul différentiel et intégral de fonctions réelles d'une variable réelle
MATH-100(b): Advanced analysis I
Dans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Show more
Related concepts (44)
Factorial
In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book Sefer Yetzirah.
Riemann zeta function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory, and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century.
Arithmetic–geometric mean
In mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means: Begin the sequences with x and y: Then define the two interdependent sequences (an) and (gn) as These two sequences converge to the same number, the arithmetic–geometric mean of x and y; it is denoted by M(x, y), or sometimes by agm(x, y) or AGM(x, y). The arithmetic–geometric mean is used in fast algorithms for exponential and trigonometric functions, as well as some mathematical constants, in particular, computing π.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.