Squeeze theoremIn calculus, the squeeze theorem (also known as the sandwich theorem, among other names) is a theorem regarding the limit of a function that is trapped between two other functions. The squeeze theorem is used in calculus and mathematical analysis, typically to confirm the limit of a function via comparison with two other functions whose limits are known. It was first used geometrically by the mathematicians Archimedes and Eudoxus in an effort to compute pi, and was formulated in modern terms by Carl Friedrich Gauss.
SubderivativeIn mathematics, the subderivative, subgradient, and subdifferential generalize the derivative to convex functions which are not necessarily differentiable. Subderivatives arise in convex analysis, the study of convex functions, often in connection to convex optimization. Let be a real-valued convex function defined on an open interval of the real line. Such a function need not be differentiable at all points: For example, the absolute value function is non-differentiable when .
Language of mathematicsThe language of mathematics or mathematical language is an extension of the natural language (for example English) that is used in mathematics and in science for expressing results (scientific laws, theorems, proofs, logical deductions, etc) with concision, precision and unambiguity. The main features of the mathematical language are the following. Use of common words with a derived meaning, generally more specific and more precise. For example, "or" means "one, the other or both", while, in common language, "both" is sometimes included and sometimes not.
One-sided limitIn calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right. The limit as decreases in value approaching ( approaches "from the right" or "from above") can be denoted: The limit as increases in value approaching ( approaches "from the left" or "from below") can be denoted: If the limit of as approaches exists then the limits from the left and from the right both exist and are equal.
Telescoping seriesIn mathematics, a telescoping series is a series whose general term is of the form , i.e. the difference of two consecutive terms of a sequence . As a consequence the partial sums only consists of two terms of after cancellation. The cancellation technique, with part of each term cancelling with part of the next term, is known as the method of differences. For example, the series (the series of reciprocals of pronic numbers) simplifies as An early statement of the formula for the sum or partial sums of a telescoping series can be found in a 1644 work by Evangelista Torricelli, De dimensione parabolae.
Triple product ruleThe triple product rule, known variously as the cyclic chain rule, cyclic relation, cyclical rule or Euler's chain rule, is a formula which relates partial derivatives of three interdependent variables. The rule finds application in thermodynamics, where frequently three variables can be related by a function of the form f(x, y, z) = 0, so each variable is given as an implicit function of the other two variables. For example, an equation of state for a fluid relates temperature, pressure, and volume in this manner.
Third derivativeIn calculus, a branch of mathematics, the third derivative or third-order derivative is the rate at which the second derivative, or the rate of change of the rate of change, is changing. The third derivative of a function can be denoted by Other notations can be used, but the above are the most common. Let . Then and . Therefore, the third derivative of f is, in this case, or, using Leibniz notation, Now for a more general definition. Let f be any function of x such that f ′′ is differentiable.
Solid angleIn geometry, a solid angle (symbol: Ω) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The point from which the object is viewed is called the apex of the solid angle, and the object is said to subtend its solid angle at that point. In the International System of Units (SI), a solid angle is expressed in a dimensionless unit called a steradian (symbol: sr).
Quotient ruleIn calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is It is provable in many ways by using other derivative rules. Given , let , then using the quotient rule: The quotient rule can be used to find the derivative of as follows: Reciprocal rule The reciprocal rule is a special case of the quotient rule in which the numerator .
Lebesgue integrationIn mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.