Power ruleIn calculus, the power rule is used to differentiate functions of the form , whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule. The power rule underlies the Taylor series as it relates a power series with a function's derivatives. Let be a function satisfying for all , where . Then, The power rule for integration states that for any real number . It can be derived by inverting the power rule for differentiation.
Constant of integrationIn calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative).
Stirling's approximationIn mathematics, Stirling's approximation (or Stirling's formula) is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre. One way of stating the approximation involves the logarithm of the factorial: where the big O notation means that, for all sufficiently large values of , the difference between and will be at most proportional to the logarithm.
Rolle's theoremIn calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one stationary point somewhere between them—that is, a point where the first derivative (the slope of the tangent line to the graph of the function) is zero. The theorem is named after Michel Rolle.
Mathematical problemA mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems. It can also be a problem referring to the nature of mathematics itself, such as Russell's Paradox. Informal "real-world" mathematical problems are questions related to a concrete setting, such as "Adam has five apples and gives John three.
Banach limitIn mathematical analysis, a Banach limit is a continuous linear functional defined on the Banach space of all bounded complex-valued sequences such that for all sequences , in , and complex numbers : (linearity); if for all , then (positivity); where is the shift operator defined by (shift-invariance); if is a convergent sequence, then . Hence, is an extension of the continuous functional where is the complex vector space of all sequences which converge to a (usual) limit in .
RadianThe radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius. The unit was formerly an SI supplementary unit and is currently a dimensionless SI derived unit, defined in the SI as 1 rad = 1 and expressed in terms of the SI base unit metre (m) as .
Semi-differentiabilityIn calculus, a branch of mathematics, the notions of one-sided differentiability and semi-differentiability of a real-valued function f of a real variable are weaker than differentiability. Specifically, the function f is said to be right differentiable at a point a if, roughly speaking, a derivative can be defined as the function's argument x moves to a from the right, and left differentiable at a if the derivative can be defined as x moves to a from the left.
Padé approximantIn mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg Frobenius, who introduced the idea and investigated the features of rational approximations of power series.
VolumeVolume is a measure of three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The definition of length (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces.