Subharmonic functionIn mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory. Intuitively, subharmonic functions are related to convex functions of one variable as follows. If the graph of a convex function and a line intersect at two points, then the graph of the convex function is below the line between those points.
Weierstrass preparation theoremIn mathematics, the Weierstrass preparation theorem is a tool for dealing with analytic functions of several complex variables, at a given point P. It states that such a function is, up to multiplication by a function not zero at P, a polynomial in one fixed variable z, which is monic, and whose coefficients of lower degree terms are analytic functions in the remaining variables and zero at P. There are also a number of variants of the theorem, that extend the idea of factorization in some ring R as u·w, where u is a unit and w is some sort of distinguished Weierstrass polynomial.
CofunctionIn mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620). For example, sine (Latin: sinus) and cosine (Latin: cosinus, sinus complementi) are cofunctions of each other (hence the "co" in "cosine"): The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens, tangens complementi): These equations are also known as the cofunction identities.
Reciprocal gamma functionIn mathematics, the reciprocal gamma function is the function where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log grows no faster than log ), but of infinite type (meaning that log grows faster than any multiple of , since its growth is approximately proportional to log in the left-half plane).
Reflection formulaIn mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation, and it is very common in the literature to use the term "functional equation" when "reflection formula" is meant. Reflection formulas are useful for numerical computation of special functions. In effect, an approximation that has greater accuracy or only converges on one side of a reflection point (typically in the positive half of the complex plane) can be employed for all arguments.
Polynomial expansionIn mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a sum of (repeated) products. During the expansion, simplifications such as grouping of like terms or cancellations of terms may also be applied.
Bernhard RiemannGeorg Friedrich Bernhard Riemann (ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman; 17 September 1826 – 20 July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis.
Approximations of πApproximations for the mathematical constant pi (pi) in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century. Further progress was not made until the 15th century (through the efforts of Jamshīd al-Kāshī).
Euler numbersIn mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion where is the hyperbolic cosine function. The Euler numbers are related to a special value of the Euler polynomials, namely: The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.
Floor and ceiling functionsIn mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). For example (floor), ⌊2.4⌋ = 2, ⌊−2.4⌋ = −3, and for ceiling; ⌈2.4⌉ = 3, and ⌈−2.4⌉ = −2. Historically, the floor of x has been–and still is–called the integral part or integer part of x, often denoted [x] (as well as a variety of other notations).