Approximations for the mathematical constant pi (pi) in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century. Further progress was not made until the 15th century (through the efforts of Jamshīd al-Kāshī). Early modern mathematicians reached an accuracy of 35 digits by the beginning of the 17th century (Ludolph van Ceulen), and 126 digits by the 19th century (Jurij Vega), surpassing the accuracy required for any conceivable application outside of pure mathematics. The record of manual approximation of pi is held by William Shanks, who calculated 527 digits correctly in 1853. Since the middle of the 20th century, the approximation of pi has been the task of electronic digital computers (for a comprehensive account, see Chronology of computation of pi). On 8 June 2022, the current record was established by Emma Haruka Iwao with Alexander Yee's y-cruncher with 100 trillion (e14) digits. The best known approximations to pi dating to before the Common Era were accurate to two decimal places; this was improved upon in Chinese mathematics in particular by the mid-first millennium, to an accuracy of seven decimal places. After this, no further progress was made until the late medieval period. Some Egyptologists have claimed that the ancient Egyptians used an approximation of pi as = 3.142857 (about 0.04% too high) from as early as the Old Kingdom. This claim has been met with skepticism. Babylonian mathematics usually approximated pi to 3, sufficient for the architectural projects of the time (notably also reflected in the description of Solomon's Temple in the Hebrew Bible). The Babylonians were aware that this was an approximation, and one Old Babylonian mathematical tablet excavated near Susa in 1936 (dated to between the 19th and 17th centuries BCE) gives a better approximation of pi as = 3.125, about 0.528% below the exact value.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
COM-300: Stochastic models in communication
L'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
PHYS-201(a): General physics : electromagnetism
Le cours traite des concepts de l'électromagnétisme et des ondes électromagnétiques.
PHYS-642: Statistical physics for optimization & learning
This course covers the statistical physics approach to computer science problems, with an emphasis on heuristic & rigorous mathematical technics, ranging from graph theory and constraint satisfaction
Show more
Related lectures (42)
Calculating with Taylor, Convexity
Covers calculating with Taylor series and convexity concepts, including sin(x) and cos(x) approximations.
Derivatives and Approximations: Logarithmic Functions
Explores derivatives and approximations, focusing on logarithmic functions and their properties.
Simple Cut: Externalizing Forces in Structures
Explores simple cuts in structures to calculate reaction forces and prevent hyperstaticity.
Show more
Related publications (40)

Systems and methods for energy-efficient measurement of neurophysiological oscillations

Mahsa Shoaran, Uisub Shin

A system for measuring synchrony between two or more regions, or within a single region, of a subject's brain. The system can include a signal conditioning module in communication with a phase extraction module. The signal conditioning module can receive a ...
2022

Model order reduction of flow based on a modular geometrical approximation of blood vessels

Simone Deparis, Luca Pegolotti

We are interested in a reduced order method for the efficient simulation of blood flow in arteries. The blood dynamics is modeled by means of the incompressible Navier–Stokes equations. Our algorithm is based on an approximated domain-decomposition of the ...
2021

Efficient equilibrium-based stress recovery for isogeometric laminated curved structures

Pablo Antolin Sanchez, Alessandro Reali

This work extends the stress recovery for laminated composite solid plates, proposed in [1,2], to curved structures. Based on 3D Isogeometric Analysis (IGA) computations and equilibrium, this procedure uses a single element through the thickness in combina ...
ELSEVIER SCI LTD2021
Show more
Related concepts (7)
Viète's formula
In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant pi: It can also be represented as: The formula is named after François Viète, who published it in 1593. As the first formula of European mathematics to represent an infinite process, it can be given a rigorous meaning as a limit expression, and marks the beginning of mathematical analysis. It has linear convergence, and can be used for calculations of pi, but other methods before and since have led to greater accuracy.
Rhind Mathematical Papyrus
The Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057 and pBM 10058) is one of the best known examples of ancient Egyptian mathematics. It is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased the papyrus in 1858 in Luxor, Egypt; it was apparently found during illegal excavations in or near the Ramesseum. It dates to around 1550 BC. The British Museum, where the majority of the papyrus is now kept, acquired it in 1865 along with the Egyptian Mathematical Leather Roll, also owned by Henry Rhind.
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Show more
Related MOOCs (6)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.