Fonction sous-harmoniqueEn mathématiques, une fonction sous-harmonique est une fonction définie sur un domaine du plan complexe et à valeurs réelles vérifiant certaines conditions d'harmonicité plus faibles que celles vérifiées par les fonctions harmoniques. C'est une notion introduite en analyse harmonique pour résoudre le problème fondamental dit problème de Dirichlet ; la résolution de ce problème utilisant les fonctions sous-harmoniques est appelée . Soit un ouvert de .
Théorème de préparation de WeierstrassEn mathématiques, le théorème de préparation de Weierstrass désignait dans un premier temps un outil utilisé dans la théorie des fonctions analytiques de plusieurs variables complexes. L'énoncé et les preuves ont par la suite été généralisés à un cadre purement algébrique : le théorème désigne maintenant un résultat d'algèbre commutative. Le théorème affirme qu'au voisinage d'un point P, une fonction analytique de plusieurs variables complexes est le produit d'une fonction non nulle en P, et d'un polynôme unitaire en l'une des variables , où les sont des fonctions analytiques des autres variables et vérifient .
CofunctionIn mathematics, a function f is cofunction of a function g if f(A) = g(B) whenever A and B are complementary angles. This definition typically applies to trigonometric functions. The prefix "co-" can be found already in Edmund Gunter's Canon triangulorum (1620). For example, sine (Latin: sinus) and cosine (Latin: cosinus, sinus complementi) are cofunctions of each other (hence the "co" in "cosine"): The same is true of secant (Latin: secans) and cosecant (Latin: cosecans, secans complementi) as well as of tangent (Latin: tangens) and cotangent (Latin: cotangens, tangens complementi): These equations are also known as the cofunction identities.
Reciprocal gamma functionIn mathematics, the reciprocal gamma function is the function where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log grows no faster than log ), but of infinite type (meaning that log grows faster than any multiple of , since its growth is approximately proportional to log in the left-half plane).
Reflection formulaIn mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation, and it is very common in the literature to use the term "functional equation" when "reflection formula" is meant. Reflection formulas are useful for numerical computation of special functions. In effect, an approximation that has greater accuracy or only converges on one side of a reflection point (typically in the positive half of the complex plane) can be employed for all arguments.
Développement (mathématiques)vignette|Développement d'un produit de fonctions polynomiales.|215x215px En mathématiques, le développement d'une expression est un procédé inverse de la factorisation, de portée toutefois plus limitée que celle-ci : alors qu'on parle de factorisation aussi bien pour les nombres entiers que pour les polynômes, par exemple, on ne parle pas de développement des nombres entiers ; cette notion nécessite en effet de travailler dans une algèbre. À l'issue d'un développement, on obtient une forme dite forme développée.
Bernhard RiemannGeorg Friedrich Bernhard Riemann, né le à Breselenz, royaume de Hanovre, mort le à Selasca, hameau de la commune de Verbania, royaume d'Italie, est un mathématicien allemand. Influent sur le plan théorique, il a apporté de nombreuses contributions importantes à la topologie, l'analyse, la géométrie différentielle et au calcul, certaines d'entre elles ayant permis par la suite le développement de la relativité générale. Bernhard Riemann est né à Breselenz, un village du royaume de Hanovre.
Approximation de πvignette|upright=2|Graphique montrant l'évolution historique de la précision record des approximations numériques de π, mesurée en décimales (représentée sur une échelle logarithmique). Dans l'histoire des mathématiques, les approximations de la constante π ont atteint une précision de 0,04 % de la valeur réelle avant le début de notre ère (Archimède). Au , des mathématiciens chinois les ont améliorées jusqu'à sept décimales. De grandes avancées supplémentaires n'ont été réalisées qu'à partir du (Al-Kashi).
Nombre d'EulerLes nombres d'Euler E forment une suite d'entiers naturels définis par le développement en série de Taylor suivant : On les appelle aussi parfois les nombres sécants ou nombres zig-zag. Les nombres d'Euler d'indice impair sont tous nuls. Ceux d'indice pair () sont strictement positifs. Les premières valeurs sont : 1 1 5 61 1 385 50 521 2 702 765 199 360 981 2 404 879 675 441 Les nombres d'Euler apparaissent dans le développement en série de Taylor de la fonction sécante (qui est la fonction dans la définition) : et, dans la version alternée de la série, dans celui de la fonction sécante hyperbolique : Ils apparaissent aussi en combinatoire comme nombres de configurations zig-zag de taille paire.
Partie entière et partie fractionnaireright|thumb|Représentation graphique en escalier de la fonction « partie entière ». En mathématiques et en informatique, la partie entière par défaut, ou partie entière inférieure, en général abrégée en partie entière tout court, d'un nombre réel est l'unique entier relatif (positif, négatif ou nul) tel que On démontre son existence et son unicité par analyse-synthèse : est le plus grand entier relatif inférieur ou égal à (ce que l'on peut prendre comme définition équivalente de la partie entière de , voir ci-dessous), son existence étant garantie par la propriété d'Archimède.