PolarographyPolarography is a type of voltammetry where the working electrode is a dropping mercury electrode (DME) or a static mercury drop electrode (SMDE), which are useful for their wide cathodic ranges and renewable surfaces. It was invented in 1922 by Czech chemist Jaroslav Heyrovský, for which he won the Nobel prize in 1959. The main advantages of mercury as electrode material are as follows: 1) a large voltage window: ca. from +0.2 V to -1.8 V vs reversible hydrogen electrode (RHE).
Half-cellIn electrochemistry, a half-cell is a structure that contains a conductive electrode and a surrounding conductive electrolyte separated by a naturally occurring Helmholtz double layer. Chemical reactions within this layer momentarily pump electric charges between the electrode and the electrolyte, resulting in a potential difference between the electrode and the electrolyte. The typical anode reaction involves a metal atom in the electrode being dissolved and transported as a positive ion across the double layer, causing the electrolyte to acquire a net positive charge while the electrode acquires a net negative charge.
Palladium-hydrogen electrodeThe palladium-hydrogen electrode (abbreviation: Pd/H2) is one of the common reference electrodes used in electrochemical study. Most of its characteristics are similar to the standard hydrogen electrode (with platinum). But palladium has one significant feature—the capability to absorb (dissolve into itself) molecular hydrogen. Two phases can coexist in palladium when hydrogen is absorbed: alpha-phase at hydrogen concentration less than 0.025 atoms per atom of palladium beta-phase at hydrogen concentration corresponding to the non-stoichiometric formula PdH0.
Reversible hydrogen electrodeA reversible hydrogen electrode (RHE) is a reference electrode, more specifically a subtype of the standard hydrogen electrodes, for electrochemical processes. Unlike the standard hydrogen electrode, its measured potential does change with the pH, so it can be directly used in the electrolyte. The name refers to the fact that the electrode is directly immersed in the actual electrolyte solution and not separated by a salt bridge. The hydrogen ion concentration is therefore not 1 mol/L, or 1 mol/kg, but corresponds to that of the electrolyte solution.
Dynamic hydrogen electrodeA dynamic hydrogen electrode (DHE) is a reference electrode, more specific a subtype of the standard hydrogen electrodes for electrochemical processes by simulating a reversible hydrogen electrode with an approximately 20 to 40 mV more negative potential. A separator in a glass tube connects two electrolytes and a small current is enforced between the cathode and anode.
VoltageVoltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a test charge between the two points. In the International System of Units (SI), the derived unit for voltage is named volt. The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g.
Corrosion engineeringCorrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form.
Stainless steelStainless steel, also known as inox or corrosion-resistant steel (CRES), is an alloy of iron that is resistant to rusting and corrosion. It contains at least 10.5% chromium and usually nickel, and may also contain other elements, such as carbon, to obtain the desired properties. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen. The alloy's properties, such as luster and resistance to corrosion, are useful in many applications.
Acid dissociation constantIn chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted K_a) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction HA A^- + H^+ known as dissociation in the context of acid–base reactions. The chemical species HA is an acid that dissociates into , the conjugate base of the acid and a hydrogen ion, .
Electroanalytical methodsElectroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The four main categories are potentiometry (the difference in electrode potentials is measured), amperometry (electric current is the analytical signal), coulometry (charge passed during a certain time is recorded), and voltammetry (the cell's current is measured while actively altering the cell's potential).