Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion.
From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace. It is therefore thermodynamically inevitable that these metals when exposed to various environments would revert to their state found in nature. Corrosion and corrosion engineering thus involves a study of chemical kinetics, thermodynamics, electrochemistry and materials science.
Generally related to metallurgy or materials science, corrosion engineering also relates to non-metallics including ceramics, cement, composite material, and conductive materials such as carbon and graphite. Corrosion engineers often manage other not-strictly-corrosion processes including (but not restricted to) cracking, brittle fracture, crazing, fretting, erosion, and more typically categorized as Infrastructure asset management. In the 1990s, Imperial College London even offered a Master of Science degree entitled "The Corrosion of Engineering Materials". UMIST – University of Manchester Institute of Science and Technology and now part of the University of Manchester also offered a similar course. Corrosion Engineering master's degree courses are available worldwide and the curricula contain study material about the control and understanding of corrosion. Ohio State University has a corrosion center named after one of the more well known corrosion engineers Mars G Fontana.
In the year 1995, it was reported that the costs of corrosion nationwide in the USA were nearly $300 billion per year.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Substrate is a term used in materials science and engineering to describe the base material on which processing is conducted. This surface could be used to produce new film or layers of material such as deposited coatings. It could be the base to which paint, adhesives, or adhesive tape is bonded. A typical substrate might be rigid such as metal, concrete, or glass, onto which a coating might be deposited. Flexible substrates are also used. With all coating processes, the condition of the surface of the substrate can strongly affect the bond of subsequent layers.
In chemistry, a corrosion inhibitor or anti-corrosive is a chemical compound that, when added to a liquid or gas, decreases the corrosion rate of a material, typically a metal or an alloy, that comes into contact with the fluid. The effectiveness of a corrosion inhibitor depends on fluid composition, quantity of water, and flow regime. Corrosion inhibitors are common in industry, and also found in over-the-counter products, typically in spray form in combination with a lubricant and sometimes a penetrating oil.
Cathodic protection (CP; kaeˈTQdIk) is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.
Ce cours d'introduction à la corrosion veut familiariser l'étudiant avec les mécanismes réactionnels de la corrosion, avec les différentes formes de corrosion et avec les principes de la protection co
Une introduction à la science des matériaux appliquée aux matériaux de construction courants, en particulier le béton et les métaux. Description de leur fabrication, leurs comportements mécanique et t
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Explores the properties, applications, classification, and recent developments of aluminum and magnesium alloys, as well as their microstructure, mechanical properties, corrosion resistance, and biodegradable applications.
This research presents a comprehensive comparative analysis of the passivation kinetics of OFP-Cu and OF-Cu in simulated repository electrolyte. The study employs a range of techniques, including potentiodynamic polarization, multi-step potentiostatic pola ...
The corrosion mechanisms of a Roman iron bezel ring were investigated by in-depth characterization of its uncommon corrosion pattern and thermodynamic modelling. A silver foil and altered glass remnants were identified, covered with thick strata of magneti ...
Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an ...