NegationIn logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity (and vice versa).
Truth valueIn logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (true or false). In some programming languages, any expression can be evaluated in a context that expects a Boolean data type. Typically (though this varies by programming language) expressions like the number zero, the empty string, empty lists, and null evaluate to false, and strings with content (like "abc"), other numbers, and objects evaluate to true.
Fuzzy set operationsFuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.
CorollaryIn mathematics and logic, a corollary (ˈkɒrəˌlɛri , kɒˈrɒləri ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another proposition; it might also be used more casually to refer to something which naturally or incidentally accompanies something else (e.g., violence as a corollary of revolutionary social changes). In mathematics, a corollary is a theorem connected by a short proof to an existing theorem.
Necessity and sufficiencyIn logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q, or the falsity of Q ensures the falsity of P.) Similarly, P is sufficient for Q, because P being true always implies that Q is true, but P not being true does not always imply that Q is not true.
Logical equivalenceIn logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. The logical equivalence of and is sometimes expressed as , , , or , depending on the notation being used. However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related. In logic, many common logical equivalences exist and are often listed as laws or properties.
Foundations of mathematicsFoundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts (set, function, geometrical figure, number, etc.
Law of noncontradictionIn logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "p is the case" and "p is not the case" are mutually exclusive. Formally, this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one, "p is the case" or "p is not the case" holds.
Statement (logic)In logic and semantics, the term statement is variously understood to mean either: a meaningful declarative sentence that is true or false, or a proposition. Which is the assertion that is made by (i.e., the meaning of) a true or false declarative sentence. In the latter case, a statement is distinct from a sentence in that a sentence is only one formulation of a statement, whereas there may be many other formulations expressing the same statement. By a statement, I mean "that which one states", not one's stating of it.