Négation logiqueEn logique et en mathématiques, la négation est un opérateur logique unaire. Il sert à nier une proposition. On note la négation d'une proposition P de diverses manières dont : ¬P (utilisée dans cet article); Non P ; Ces formulations se lisent « négation de P » ou plus simplement « non P ». Dans l'interprétation par des tables de vérité, la proposition ¬P est vraie quand P est fausse et elle est fausse quand P est vraie. La table de vérité s'écrit simplement : ou On remarque alors que où dénote une contradiction.
Valeur de véritéUne valeur de vérité est une valeur attribuée à chaque proposition logique. Pour donner une valeur de vérité à une proposition, on attribue des valeurs de vérité aux variables qu'elle contient. La valeur d'une proposition formés de deux propositions P et Q et d'un connecteur est calculée à partir des valeurs de vérité attribuées à P et à Q. Ainsi la valeur de vérité attribuée à « P et Q » sera « p.q » où « . » est la multiplication. En conséquence, P et Q est vrai si et seulement si P et Q sont chacun vrais.
Fuzzy set operationsFuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.
CorollaireIn mathematics and logic, a corollary (ˈkɒrəˌlɛri , kɒˈrɒləri ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another proposition; it might also be used more casually to refer to something which naturally or incidentally accompanies something else (e.g., violence as a corollary of revolutionary social changes). In mathematics, a corollary is a theorem connected by a short proof to an existing theorem.
Necessity and sufficiencyIn logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P. (Equivalently, it is impossible to have P without Q, or the falsity of Q ensures the falsity of P.) Similarly, P is sufficient for Q, because P being true always implies that Q is true, but P not being true does not always imply that Q is not true.
Équivalence logiqueEn logique classique, deux propositions P et Q sont dites logiquement équivalentes ou simplement équivalentes quand il est possible de déduire Q à partir de P et de déduire P à partir de Q. En calcul des propositions, cela revient à dire que P et Q ont même valeur de vérité : P et Q sont soit toutes les deux vraies, soit toutes les deux fausses. L'équivalence logique s'exprime souvent sous la forme si et seulement si, dans des cadres comme l'enseignement ou la métamathématique pour parler des propriétés de la logique elle-même, et non du connecteur logique qui lie deux propositions.
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Principe de non-contradictionEn logique, le principe de non-contradiction est la loi qui interdit d'affirmer et nier à la fois le même terme ou la même proposition. Aristote ne nomme pas le principe de non-contradiction mais le définit ainsi dans Métaphysique : « Il est impossible qu’un même attribut appartienne et n’appartienne pas en même temps et sous le même rapport à une même chose ». Assurément, une chose peut être blanche aujourd’hui ou d’une autre couleur demain. De même, cette chose est plus grande ou plus petite qu’une autre à un moment donné.
Statement (logic)In logic and semantics, the term statement is variously understood to mean either: a meaningful declarative sentence that is true or false, or a proposition. Which is the assertion that is made by (i.e., the meaning of) a true or false declarative sentence. In the latter case, a statement is distinct from a sentence in that a sentence is only one formulation of a statement, whereas there may be many other formulations expressing the same statement. By a statement, I mean "that which one states", not one's stating of it.