Class functionIn mathematics, especially in the fields of group theory and representation theory of groups, a class function is a function on a group G that is constant on the conjugacy classes of G. In other words, it is invariant under the conjugation map on G. Such functions play a basic role in representation theory. The character of a linear representation of G over a field K is always a class function with values in K. The class functions form the center of the group ring K[G]. Here a class function f is identified with the element .
Semisimple moduleIn mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient.
Dihedral groupIn mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, D_n or Dih_n refers to the symmetries of the n-gon, a group of order 2n. In abstract algebra, D_2n refers to this same dihedral group.
Rodrigues' formulaIn mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) is a formula for the Legendre polynomials independently introduced by , and . The name "Rodrigues formula" was introduced by Heine in 1878, after Hermite pointed out in 1865 that Rodrigues was the first to discover it. The term is also used to describe similar formulas for other orthogonal polynomials. describes the history of the Rodrigues formula in detail.
Legendre polynomialsIn mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions.
Random measureIn probability theory, a random measure is a measure-valued random element. Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes. Random measures can be defined as transition kernels or as random elements. Both definitions are equivalent. For the definitions, let be a separable complete metric space and let be its Borel -algebra. (The most common example of a separable complete metric space is ) A random measure is a (a.
Homotopy category of chain complexesIn homological algebra in mathematics, the homotopy category K(A) of chain complexes in an A is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes Kom(A) of A and the D(A) of A when A is ; unlike the former it is a , and unlike the latter its formation does not require that A is abelian. Philosophically, while D(A) turns into isomorphisms any maps of complexes that are quasi-isomorphisms in Kom(A), K(A) does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence.
Vertex figureIn geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines across the connected faces, joining adjacent points around the face. When done, these lines form a complete circuit, i.e. a polygon, around the vertex. This polygon is the vertex figure. More precise formal definitions can vary quite widely, according to circumstance.
Wigner–Eckart theoremThe Wigner–Eckart theorem is a theorem of representation theory and quantum mechanics. It states that matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is independent of angular momentum orientation, and the other a Clebsch–Gordan coefficient. The name derives from physicists Eugene Wigner and Carl Eckart, who developed the formalism as a link between the symmetry transformation groups of space (applied to the Schrödinger equations) and the laws of conservation of energy, momentum, and angular momentum.
Peano existence theoremIn mathematics, specifically in the study of ordinary differential equations, the Peano existence theorem, Peano theorem or Cauchy–Peano theorem, named after Giuseppe Peano and Augustin-Louis Cauchy, is a fundamental theorem which guarantees the existence of solutions to certain initial value problems. Peano first published the theorem in 1886 with an incorrect proof. In 1890 he published a new correct proof using successive approximations.