Summary
In mathematics, a fixed-point theorem is a result saying that a function F will have at least one fixed point (a point x for which F(x) = x), under some conditions on F that can be stated in general terms. The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, but it doesn't describe how to find the fixed point (See also Sperner's lemma). For example, the cosine function is continuous in [−1,1] and maps it into [−1, 1], and thus must have a fixed point. This is clear when examining a sketched graph of the cosine function; the fixed point occurs where the cosine curve y = cos(x) intersects the line y = x. Numerically, the fixed point (known as the Dottie number) is approximately x = 0.73908513321516 (thus x = cos(x) for this value of x). The Lefschetz fixed-point theorem (and the Nielsen fixed-point theorem) from algebraic topology is notable because it gives, in some sense, a way to count fixed points. There are a number of generalisations to Banach fixed-point theorem and further; these are applied in PDE theory. See fixed-point theorems in infinite-dimensional spaces. The collage theorem in fractal compression proves that, for many images, there exists a relatively small description of a function that, when iteratively applied to any starting image, rapidly converges on the desired image. The Knaster–Tarski theorem states that any order-preserving function on a complete lattice has a fixed point, and indeed a smallest fixed point. See also Bourbaki–Witt theorem. The theorem has applications in abstract interpretation, a form of static program analysis. A common theme in lambda calculus is to find fixed points of given lambda expressions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.