Quarter periodIn mathematics, the quarter periods K(m) and iK ′(m) are special functions that appear in the theory of elliptic functions. The quarter periods K and iK ′ are given by and When m is a real number, 0 < m < 1, then both K and K ′ are real numbers. By convention, K is called the real quarter period and iK ′ is called the imaginary quarter period. Any one of the numbers m, K, K ′, or K ′/K uniquely determines the others.
Euler's constantEuler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log: Here, ⌊ ⌋ represents the floor function. The numerical value of Euler's constant, to 50 decimal places, is: The constant first appeared in a 1734 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43).
Generalized Riemann hypothesisThe Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true.
General number field sieveIn number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form in O and L-notations. It is a generalization of the special number field sieve: while the latter can only factor numbers of a certain special form, the general number field sieve can factor any number apart from prime powers (which are trivial to factor by taking roots).
Integer factorizationIn number theory, integer factorization is the decomposition, when possible, of a positive integer into a product of smaller integers. If the factors are further restricted to be prime numbers, the process is called prime factorization, and includes the test whether the given integer is prime (in this case, one has a "product" of a single factor). When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is known. However, it has not been proven that such an algorithm does not exist.
Probable primeIn number theory, a probable prime (PRP) is an integer that satisfies a specific condition that is satisfied by all prime numbers, but which is not satisfied by most composite numbers. Different types of probable primes have different specific conditions. While there may be probable primes that are composite (called pseudoprimes), the condition is generally chosen in order to make such exceptions rare.
Generating functionIn mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem.
Langlands programIn representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics.
99 (nine) is the natural number following and preceding . Hindu–Arabic numeral system Circa 300 BCE, as part of the Brahmi numerals, various Indians wrote a digit 9 similar in shape to the modern closing question mark without the bottom dot. The Kshatrapa, Andhra and Gupta started curving the bottom vertical line coming up with a -look-alike. The Nagari continued the bottom stroke to make a circle and enclose the 3-look-alike, in much the same way that the sign @ encircles a lowercase a.
Dirichlet characterIn analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus (where is a positive integer) if for all integers and : that is, is completely multiplicative. (gcd is the greatest common divisor) that is, is periodic with period . The simplest possible character, called the principal character, usually denoted , (see Notation below) exists for all moduli: The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions.