Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Alfredo PasquarelloAlfredo Pasquarello studied physics at the
Scuola Normale Superiore
of Pisa and at the University of Pisa, obtaining their respective degrees in 1986. He obtained a doctoral degree at the EPFL in 1991 with a thesis on
Multiphoton Transitions in Solids
. Then, he moved to Bell Laboratories at Murray Hill (New Jersey), where he carried out postdoctoral research on the magnetic properties of carbon fullerenes. In 1993, he joined the Institute for Numerical Research in the Physics of Materials (IRRMA), where his activity involved first-principles simulation methods. In 1998, he was awarded the EPFL Latsis Prize for his research work on disordered silica materials. Succeeding in grant programs of the Swiss National Science Foundation, he then set up his own research group at IRRMA. In July 2003, he is appointed Professor in Theoretical Condensed Matter Physics at EPFL. Currently, he leads the Chair of Atomic Scale Simulation.
Jürg Alexander SchiffmannAfter obtaining his diploma in mechanical engineering from EPFL in 1999 he co-founded a start-up company dedicated to the design of gas bearing supported rotors. In 2005 he joined Fischer Engineering Solutions where he led the development of small-scale, gas bearing supported high-speed turbomachinery for fuel cell air supplies and for domestic scale heat pumps. In parallel he worked on his PhD, which he obtained from EPFL in 2008 and for which he was awarded the SwissElectric Research Award. He then joined the Gas Turbine Lab at MIT as a postdoctoral associate where he worked on foil bearings and on the experimental investigation of radial diffusers. In 2013 he was nominated assistant professor at the Ecole Polytechnique Fédérale de Lausanne where he founds the Laboratory for Applied Mechanical Design. His current research interest are in gas lubricated bearings, in aerodynamics of small-scale compressors and turbines and in automated design and optimization methodologies.
Benoît Marie Joseph DeveaudBenoit Deveaud is now Research Director at Ecole Polytechnique in Palaiseau (France)
Benoît Deveaud was born in France in 1952. In 1971, he enters Ecole Polytechnique in Paris where he specializes in physics. In 1974, he joins the National Center for research in Telecommunications (CNET).
He undertakes at the same time studies on the main impurity centers in III-V semiconductors, and continues his studies in physics by preparing a diploma in solid state physics in Rennes. In 1984, he defends his PhD thesis at the University of Grenoble, under the supervision of Gérard Martinez. Meanwhile, his team gets interested in semiconductor microstructures and launches studies on the structural and optical properties of superlattices based on gallium arsenide. These studies highlight for example vertical transport in superlattices as well as the quantification of excitonic energies in a quantum well.
In 1986 he joins the team of Daniel Chemla in Bell Laboratories (Holmdel, USA) and takes part in the development of the first luminescence set-up having a temporal resolution better than 1 picosecond. He studies then ultrafast processes in quantum wells.
Returning to France in 1988, at CNET, he coaches a laboratory of high-speed studies, interested in the optical and electronic properties of semiconductor materials.
Appointed professor in Physics at EPFL in October 1993, his research team studies the physics of ultrafast processes in semiconductor micro and nanostructures and in devices that use them. He has been the Director the Institute of Micro and Optoelectronics since 1998, then of the Institute of Quantum Photonic and Electronics from 2003 to 2008.
His team takes an active part in the "Quantum Photonics" National Center of Competence in Research, of which he was the Deputy Director from 2001 to 2005 then the Director from July 2005 till the end of the NCCR in 2013
From 2008 till 2014 he has been Dean for Research at EPFL and president of the research commission.
Starting in 2014, he has been head of Physics, till his departure from EPFL in 2017.
He has been a divisional editor of Physical Review Letters from 2001 to 2007.
Romuald HoudréCurriculum Vitae
CV
2011
Appointed as Adjunct Professor
2006
Appointed as Maitre d'Enseignement et de Recherche
2004
Joins the "Laboratory of Quantum Electronics" led by Prof. B. Deveaud-Plédran
2001-2004
Appointed as "Adjoint Scientifique" at the Institute for Quantum Photonics and Electronics (previously Institute for Micro and Optoelectronics led by Prof. M. Ilegems)
1998
Habilitation, University Pierre et Marie Curie, Paris 6 (France)
1997
Invited researcher at NTT, Optoelectronics Department (Atsugi, Japan)
1988-2000
"Collaborateur scientifique" at the Institut for Micro and Optoelectronics with Prof. M.Ilegems at the Swiss Federal Institut of Technology in Lausanne (Switzerland). In charge of the Molecular Beam Epitaxy (1988-1996) and the research on optical microcavities (1996-2000)
1987-1988
Laboratoire de Physique de la Matière Condensée at Ecole Polytechnique (France).
1986-1987
Postdoctoral fellow at the University of Illinois at Urbana-Champaign (U.S.A.) with Prof. H.Morkoç in the molecular beam epitaxy group
1983-1985
Ph.D. thesis on the photoemission from quantum wells and superlattices under negative electron affinity at Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique (France), G.Lampel and C.Hermann as advisors
Jamie PaikProf. Jamie Paik is founder and director of the Reconfigurable Robotics Lab (RRL) of Swiss Federal Institute of Technology (EPFL) and a core member of Swiss NCCR robotics group. The RRL leverages expertise in multi-material fabrication and smart material actuation for novel robot designs. She received her PhD in Seoul National University on designing humanoid arm and a hand while being sponsored by Samsung Electronics. This 7-DoF humanoid arm was the lightest in the literature at that time being 3.7kg including the 8-DoF hand. During her Postdoctoral positions in the Institut des Systems Intelligents et de Robotic in Universitat Pierre Marie Curie, Paris VI, she developed laparoscopic tools named JAiMY that are internationally patented and commercialized now by Endocontrol-medical.com. At Harvard University’s Microrobotics Laboratory, she started developing unconventional robots that push the physical limits of material and mechanisms. Her latest research effort is in soft robotics including self-morphing Robogami (robotic origami) that transforms its planar shape to 2D or 3D by folding in predefined patterns and sequences, just like the paper art, origami.
Ursula OesterleUrsula Oesterle joint the EPFL as Vice President for Innovation on March 1st 2021.
She holds a PhD in physics from EPFL and a master's degree in physics and chemistry from ETH Zurich.
Prior to that, Ursula spent 20 years in Silicon Valley and Asia working in open innovation and with start-ups. First, she worked in the telecom-IT industry and then in Life Science. She led digital innovation initiatives and corporate transformation programs.
Ursula is also an entrepreneur and co-founded The Mixing Bowl, whose mission is to promote IT innovation in food and agriculture industry through a business-driven dialogue between existing industry players, startups, investors and other food innovators.
She co-founded Corporate Innovators Huddle, a forum for sharing information and best practices on various aspects of innovation in large corporations.
LinkedIn