Convex setIn geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex region is a subset that intersects every line into a single line segment (possibly empty). For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set is always a convex curve.
Epigraph (mathematics)In mathematics, the epigraph or supergraph of a function valued in the extended real numbers is the set, denoted by of all points in the Cartesian product lying on or above its graph. The strict epigraph is the set of points in lying strictly above its graph. Importantly, although both the graph and epigraph of consists of points in the epigraph consists of points in the subset which is not necessarily true of the graph of If the function takes as a value then will be a subset of its epigraph For example, if then the point will belong to but not to These two sets are nevertheless closely related because the graph can always be reconstructed from the epigraph, and vice versa.
GeometryGeometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Convex hullIn geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact.
Affine hullIn mathematics, the affine hull or affine span of a set S in Euclidean space Rn is the smallest affine set containing S, or equivalently, the intersection of all affine sets containing S. Here, an affine set may be defined as the translation of a vector subspace. The affine hull aff(S) of S is the set of all affine combinations of elements of S, that is, The affine hull of the empty set is the empty set. The affine hull of a singleton (a set made of one single element) is the singleton itself.
Bernoulli's inequalityIn mathematics, Bernoulli's inequality (named after Jacob Bernoulli) is an inequality that approximates exponentiations of . It is often employed in real analysis. It has several useful variants: for every integer and real number . The inequality is strict if and . for every integer and every real number . for every even integer and every real number . for every real number and . The inequality is strict if and . for every real number and .
Minkowski's theoremIn mathematics, Minkowski's theorem is the statement that every convex set in which is symmetric with respect to the origin and which has volume greater than contains a non-zero integer point (meaning a point in that is not the origin). The theorem was proved by Hermann Minkowski in 1889 and became the foundation of the branch of number theory called the geometry of numbers. It can be extended from the integers to any lattice and to any symmetric convex set with volume greater than , where denotes the covolume of the lattice (the absolute value of the determinant of any of its bases).
Semi-continuityIn mathematical analysis, semicontinuity (or semi-continuity) is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is upper (respectively, lower) semicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher (respectively, lower) than A function is continuous if and only if it is both upper and lower semicontinuous.
Half-space (geometry)In geometry, a half-space is either of the two parts into which a plane divides the three-dimensional Euclidean space. If the space is two-dimensional, then a half-space is called a half-plane (open or closed). A half-space in a one-dimensional space is called a half-line or ray. More generally, a half-space is either of the two parts into which a hyperplane divides an affine space. That is, the points that are not incident to the hyperplane are partitioned into two convex sets (i.e.
Transportation theory (mathematics)In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781. In the 1920s A.N. Tolstoi was one of the first to study the transportation problem mathematically. In 1930, in the collection Transportation Planning Volume I for the National Commissariat of Transportation of the Soviet Union, he published a paper "Methods of Finding the Minimal Kilometrage in Cargo-transportation in space".