Demand pagingIn computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only if an attempt is made to access it and that page is not already in memory (i.e., if a page fault occurs). It follows that a process begins execution with none of its pages in physical memory, and many page faults will occur until most of a process's working set of pages are located in physical memory.
Computer architectureIn computer science, computer architecture is a description of the structure of a computer system made from component parts. It can sometimes be a high-level description that ignores details of the implementation. At a more detailed level, the description may include the instruction set architecture design, microarchitecture design, logic design, and implementation. The first documented computer architecture was in the correspondence between Charles Babbage and Ada Lovelace, describing the analytical engine.
UnixUnix (ˈjuːnᵻks; trademarked as UNIX) is a family of multitasking, multi-user computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and others. Initially intended for use inside the Bell System, AT&T licensed Unix to outside parties in the late 1970s, leading to a variety of both academic and commercial Unix variants from vendors including University of California, Berkeley (BSD), Microsoft (Xenix), Sun Microsystems (SunOS/Solaris), HP/HPE (HP-UX), and IBM (AIX).
Rate-monotonic schedulingIn computer science, rate-monotonic scheduling (RMS) is a priority assignment algorithm used in real-time operating systems (RTOS) with a static-priority scheduling class. The static priorities are assigned according to the cycle duration of the job, so a shorter cycle duration results in a higher job priority. These operating systems are generally preemptive and have deterministic guarantees with regard to response times. Rate monotonic analysis is used in conjunction with those systems to provide scheduling guarantees for a particular application.
32-bit computingIn computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GB of RAM to be accessed, far more than previous generations of system architecture allowed.
Cooperative multitaskingCooperative multitasking, also known as non-preemptive multitasking, is a style of computer multitasking in which the operating system never initiates a context switch from a running process to another process. Instead, in order to run multiple applications concurrently, processes voluntarily yield control periodically or when idle or logically blocked. This type of multitasking is called cooperative because all programs must cooperate for the scheduling scheme to work.
NetBSDNetBSD is a free and open-source Unix operating system based on the Berkeley Software Distribution (BSD). It was the first open-source BSD descendant officially released after 386BSD was forked. It continues to be actively developed and is available for many platforms, including servers, desktops, handheld devices, and embedded systems. The NetBSD project focuses on code clarity, careful design, and portability across many computer architectures. Its source code is publicly available and permissively licensed.
Worst-case execution timeThe worst-case execution time (WCET) of a computational task is the maximum length of time the task could take to execute on a specific hardware platform. Worst case execution time is typically used in reliable real-time systems, where understanding the worst case timing behaviour of software is important for reliability or correct functional behaviour. As an example, a computer system that controls the behaviour of an engine in a vehicle might need to respond to inputs within a specific amount of time.
Multilevel feedback queueIn computer science, a multilevel feedback queue is a scheduling algorithm. Scheduling algorithms are designed to have some process running at all times to keep the central processing unit (CPU) busy. The multilevel feedback queue extends standard algorithms with the following design requirements: Separate processes into multiple ready queues based on their need for the processor. Give preference to processes with short CPU bursts. Give preference to processes with high I/O bursts.
Interrupt vector tableAn interrupt vector table (IVT) is a data structure that associates a list of interrupt handlers with a list of interrupt requests in a table of interrupt vectors. Each entry of the interrupt vector table, called an interrupt vector, is the address of an interrupt handler(also known as ISR). While the concept is common across processor architectures, IVTs may be implemented in architecture-specific fashions. For example, a dispatch table is one method of implementing an interrupt vector table.