In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in 32-bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GB of RAM to be accessed, far more than previous generations of system architecture allowed. 32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Apple Macintosh. Fully 32-bit microprocessors such as the HP FOCUS, Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This generation of personal computers coincided with and enabled the first mass-adoption of the World Wide Web. While 32-bit architectures are still widely-used in specific applications, the PC and server market has moved on to 64 bits with x86-64 since the mid-2000s with installed memory often exceeding the 32-bit 4G RAM address limits on entry level computers. The latest generation of mobile phones have also switched to 64 bits. A 32-bit register can store 232 different values. The range of integer values that can be stored in 32 bits depends on the integer representation used. With the two most common representations, the range is 0 through 4,294,967,295 (232 − 1) for representation as an (unsigned) binary number, and −2,147,483,648 (−231) through 2,147,483,647 (231 − 1) for representation as two's complement. One important consequence is that a processor with 32-bit memory addresses can directly access at most 4 GiB of byte-addressable memory (though in practice the limit may be lower).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (22)
PHYS-423: Plasma I
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
CIVIL-510: Quantitative imaging for engineers
First 2 courses are Tuesday 16-19h!This course will arm students with knowledge of different imaging techniques for practical measurements in many different fields of civil engineering. Modalities wil
ME-213: Programmation pour ingénieur
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.