Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is carried out mainly by astronomers with telescopes, its physical exploration is conducted both by uncrewed robotic space probes and human spaceflight. Space exploration, like its classical form astronomy, is one of the main sources for space science.
While the observation of objects in space, known as astronomy, predates reliable recorded history, it was the development of large and relatively efficient rockets during the mid-twentieth century that allowed physical space exploration to become a reality. The world's first large-scale experimental rocket program was Opel-RAK under the leadership of Fritz von Opel and Max Valier during the late 1920s leading to the first crewed rocket cars and rocket planes, which paved the way for the Nazi era V2 program and US and Soviet activities from 1950 onwards. The Opel-RAK program and the spectacular public demonstrations of ground and air vehicles drew large crowds, as well as caused global public excitement as so-called "Rocket Rumble" and had a large long-lasting impact on later spaceflight pioneers like Wernher von Braun. Common rationales for exploring space include advancing scientific research, national prestige, uniting different nations, ensuring the future survival of humanity, and developing military and strategic advantages against other countries.
The early era of space exploration was driven by a "Space Race" between the Soviet Union and the United States. A driving force of the start of space exploration was during the Cold War. After the ability to create nuclear weapons, the narrative of defense/offense left land and the power to control the air became the focus. Both the Soviet and the U.S. were fighting to prove their superiority in technology through exploring the unknown: space. In fact, the reason NASA was made was due to the response of Sputnik I.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Planetary protection is a guiding principle in the design of an interplanetary mission, aiming to prevent biological contamination of both the target celestial body and the Earth in the case of sample-return missions. Planetary protection reflects both the unknown nature of the space environment and the desire of the scientific community to preserve the pristine nature of celestial bodies until they can be studied in detail. There are two types of interplanetary contamination.
Asteroid mining is the hypothetical extraction of materials from asteroids and other minor planets, including near-Earth objects. Notable asteroid mining challenges include the high cost of spaceflight, unreliable identification of asteroids which are suitable for mining, and the challenges of extracting usable material in a space environment. Asteroid sample return research missions, such as Hayabusa, Hayabusa2, and in-progress OSIRIS-REx illustrate the challenges of collecting ore from space using current technology.
Colonization or settlement of Mars is the theoretical human migration and long-term human establishment of Mars. The prospect has garnered interest from public space agencies and private corporations and has been extensively explored in science fiction writing, film, and art. Organizations have proposed plans for a human mission to Mars, the first step towards any colonization effort, but no person has set foot on the planet, and there have been no return missions.
A spacecraft (: spacecraft) is a vehicle that is designed to fly in outer space and operate there. Spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle (carrier rocket).
An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules. The atmosphere of Earth is composed of nitrogen (78 %), oxygen (21 %), argon (0.
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Sample return capsules, as the Apollo Command Module have been widely used to ad- vance the knowledge and planning of manned lunar and planetary return missions. Such reentry vehicles undergo extreme