Spacecraft electric propulsion (or just electric propulsion) is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.
Electric thrusters typically use much less propellant than chemical rockets because they have a higher exhaust speed (operate at a higher specific impulse) than chemical rockets. Due to limited electric power the thrust is much weaker compared to chemical rockets, but electric propulsion can provide thrust for a longer time.
Electric propulsion was first successfully demonstrated by NASA and is now a mature and widely used technology on spacecraft. American and Russian satellites have used electric propulsion for decades. , over 500 spacecraft operated throughout the Solar System use electric propulsion for station keeping, orbit raising, or primary propulsion. In the future, the most advanced electric thrusters may be able to impart a delta-v of , which is enough to take a spacecraft to the outer planets of the Solar System (with nuclear power), but is insufficient for interstellar travel. An electric rocket with an external power source (transmissible through laser on the photovoltaic panels) has a theoretical possibility for interstellar flight. However, electric propulsion is not suitable for launches from the Earth's surface, as it offers too little thrust.
On a journey to Mars, an electrically powered ship might be able to carry 70% of its initial mass to the destination, while a chemical rocket could carry only a few percent.
The idea of electric propulsion for spacecraft was introduced in 1911 by Konstantin Tsiolkovsky. Earlier, Robert Goddard had noted such a possibility in his personal notebook.
On 15 May 1929, the Soviet research laboratory Gas Dynamics Laboratory (GDL) commenced development of electric rocket engines. Headed by Valentin Glushko, in the early 1930s he created the world's first example of an electrothermal rocket engine.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Intergalactic travel is the hypothetical crewed or uncrewed travel between galaxies. Due to the enormous distances between the Milky Way and even its closest neighbors—tens of thousands to millions of light-years—any such venture would be far more technologically and financially demanding than even interstellar travel. Intergalactic distances are roughly a hundred-thousandfold (five orders of magnitude) greater than their interstellar counterparts.
Interstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast difference in the scale of the involved distances. Whereas the distance between any two planets in the Solar System is less than 30 astronomical units (AU), stars are typically separated by hundreds of thousands of AU, causing these distances to typically be expressed instead in light-years.
An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems. There are five interstellar probes, all launched by the American space agency NASA: Voyager 1, Voyager 2, Pioneer 10, Pioneer 11 and New Horizons. As of 2019, Voyager 1, Voyager 2 and Pioneer 10 are the only probes to have actually reached interstellar space.
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
A spacecraft (: spacecraft) is a vehicle that is designed to fly in outer space and operate there. Spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, planetary exploration, and transportation of humans and cargo. All spacecraft except single-stage-to-orbit vehicles cannot get into space on their own, and require a launch vehicle (carrier rocket).
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). , four global systems are operational: the United States' Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System, and the European Union's Galileo.
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime.
Reservoir sedimentation is a key challenge for storage sustainability because it causes volume loss, affecting hydropower production capacity, dam safety, and flood management. A preliminary EPFL study proposed and studied an innovative device (called SEDM ...
CRC Press/Balkema2023
SPIDER is the negative ion source testbed for ITER neutral beam injector. It is currently the largest negative ion source ever built, equipped with a 100 keV accelerator, aiming at producing a negative ion beam with an extracted current density in hydrogen ...
2023
,
Challenging space missions include those at very low altitudes, where the atmosphere is the source of aerodynamic drag on the spacecraft, that finally defines the mission's lifetime, unless a way to compensate for it is provided. This environment is named ...