Thin-film optics is the branch of optics that deals with very thin structured layers of different materials. In order to exhibit thin-film optics, the thickness of the layers of material must be similar to the coherence length; for visible light it is most often observed between 200 and 1000 nm of thickness. Layers at this scale can have remarkable reflective properties due to light wave interference and the difference in refractive index between the layers, the air, and the substrate. These effects alter the way the optic reflects and transmits light. This effect, known as thin-film interference, is observable in soap bubbles and oil slicks.
More general periodic structures, not limited to planar layers, exhibit structural coloration with more complex dependence on angle, and are known as photonic crystals.
In manufacturing, thin film layers can be achieved through the deposition of one or more thin layers of material onto a substrate (usually glass). This is most often done using a physical vapor deposition process, such as evaporation or sputter deposition, or a chemical process such as chemical vapor deposition.
Thin films are used to create optical coatings. Examples include low emissivity panes of glass for houses and cars, anti-reflective coatings on glasses, reflective baffles on car headlights, and for high precision optical filters and mirrors. Another application of these coatings is spatial filtering.
Peacock butterfly (inachis io) 2.jpg|The blue wing patches of the ''[[Aglais io]]''.{{Cite journal|doi = 10.1016/j.matpr.2014.09.007|title = Thin Film and Multilayer Optics Cause Structural Colors of Many Insects and Birds|journal = Materials Today: Proceedings|volume = 1|pages = 109–121|year = 2014|last1 = Stavenga|first1 = D. G. }}
Common Bluebottle-Graphium sarpedon teredon.JPG|''[[Graphium sarpedon]]''.
Parotia lawesii by Bowdler Sharpe.jpg|The breast feathers of the ''[[Lawes's parotia]].''{{Cite journal|doi = 10.1098/rspb.2010.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Intro into the relation between physical and structural properties; introduction into different X-Ray techniques; examples of successful technological transfer using X-Ray techniques;
Structural prope
Ce cours introduit les spécificités des techniques relevant de l'optique moderne, en particulier les aspects touchant à la fréquence extrêmement élevée de l'onde et ceux liés à l'émission et la détect
This course aims at providing engineering and design guidelines for selected Photonic Micro- and Nanosystems. In particular, Optical MEMS and Integrated Photonics are reviewed. Standard fabrication pr
A dichroic filter, thin-film filter, or interference filter is a color filter used to selectively pass light of a small range of colors while reflecting other colors. By comparison, dichroic mirrors and dichroic reflectors tend to be characterized by the colors of light that they reflect, rather than the colors they pass. Dichroic filters can filter light from a white light source to produce light that is perceived by humans to be highly saturated in color. Such filters are popular in architectural and theatrical applications.
An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy.
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium. This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors. The reflection of light from a single interface between two media is described by the Fresnel equations. However, when there are multiple interfaces, such as in the figure, the reflections themselves are also partially transmitted and then partially reflected.
Polarization (also polarisation) is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string.
Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances. The simplifying assumptions of geometrical optics include that light rays: propagate in straight-line paths as they travel in a homogeneous medium bend, and in particular circumstances may split in two, at the interface between two dissimilar media follow curved paths in a medium in which the refractive index changes may be absorbed or reflected.
A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering.
Energy-efficient windows are being used to increase the thermal insulation of a fa & ccedil;ade. Such insulating windows contain an ultra-thin, multilayered, transparent silver coating that acts as an infrared mirror which significantly reduces thermal los ...
2024
,
Crystallization of amorphous layers has been demonstrated under various radically different laser-exposure conditions, including continuous wave (cw) and pulsed lasers. Here, we investigate the specific role of ionization in the crystallization of dielectr ...
A scintillation device including a silicon plate having a rectangular shape and having a first side and a second side opposite the first side, wherein the first side includes a plurality of first channels arranged to be in parallel with each other extendin ...