Punched cardA punched card (also punch card or punched-card) is a piece of stiff paper that holds digital data represented by the presence or absence of holes in predefined positions. Punched cards were once common in data processing applications or to directly control automated machinery. Punched cards were widely used through much of the 20th century in the data processing industry, where specialized and increasingly complex unit record machines, organized into semiautomatic data processing systems, used punched cards for data input, output, and storage.
Data at restData at rest in information technology means data that is housed physically on computer data storage in any digital form (e.g. cloud storage, s, databases, data warehouses, spreadsheets, archives, tapes, off-site or cloud backups, mobile devices etc.). Data at rest includes both structured and unstructured data. This type of data is subject to threats from hackers and other malicious threats to gain access to the data digitally or physical theft of the data storage media.
Solid-state storageSolid-state storage (SSS) is a type of non-volatile computer storage that stores and retrieves digital information using only electronic circuits, without any involvement of moving mechanical parts. This differs fundamentally from the traditional electromechanical storage, which records data using rotating or linearly moving media coated with magnetic material. Solid-state storage devices typically store data using electrically-programmable non-volatile flash memory, however some devices use battery-backed volatile random-access memory (RAM).
Data stripingIn computer data storage, data striping is the technique of segmenting logically sequential data, such as a file, so that consecutive segments are stored on different physical storage devices. Striping is useful when a processing device requests data more quickly than a single storage device can provide it. By spreading segments across multiple devices which can be accessed concurrently, total data throughput is increased. It is also a useful method for balancing I/O load across an array of disks.
RAIDRAID (reɪd; "redundant array of inexpensive disks" or "redundant array of independent disks") is a data storage virtualization technology that combines multiple physical disk drive components into one or more logical units for the purposes of data redundancy, performance improvement, or both. This is in contrast to the previous concept of highly reliable mainframe disk drives referred to as "single large expensive disk" (SLED). Data is distributed across the drives in one of several ways, referred to as RAID levels, depending on the required level of redundancy and performance.
Hard disk drive failureA hard disk drive failure occurs when a hard disk drive malfunctions and the stored information cannot be accessed with a properly configured computer. A hard disk failure may occur in the course of normal operation, or due to an external factor such as exposure to fire or water or high magnetic fields, or suffering a sharp impact or environmental contamination, which can lead to a head crash. The stored information on a hard drive may also be rendered inaccessible as a result of data corruption, disruption or destruction of the hard drive's master boot record, or by malware deliberately destroying the disk's contents.
Disk read-and-write headA disk read-and-write head is the small part of a disk drive which moves above the disk platter and transforms the platter's magnetic field into electric current (reads the disk) or, vice versa, transforms electric current into magnetic field (writes the disk). The heads have gone through a number of changes over the years. In a hard drive, the heads fly above the disk surface with clearance of as little as 3 nanometres. The flying height has been decreasing with each new generation of technology to enable higher areal density.
Partition typeThe partition type (or partition ID) in a partition's entry in the partition table inside a master boot record (MBR) is a byte value intended to specify the the partition contains or to flag special access methods used to access these partitions (e.g. special CHS mappings, LBA access, logical mapped geometries, special driver access, hidden partitions, secured or encrypted file systems, etc.). Lists of assigned partition types to be used in the partition table in the MBR were originally maintained by IBM and Microsoft internally.
Standard RAID levelsIn computer storage, the standard RAID levels comprise a basic set of RAID ("redundant array of independent disks" or "redundant array of inexpensive disks") configurations that employ the techniques of striping, mirroring, or parity to create large reliable data stores from multiple general-purpose computer hard disk drives (HDDs). The most common types are RAID 0 (striping), RAID 1 (mirroring) and its variants, RAID 5 (distributed parity), and RAID 6 (dual parity).
Resistive random-access memoryResistive random-access memory (ReRAM or RRAM) is a type of non-volatile (NV) random-access (RAM) computer memory that works by changing the resistance across a dielectric solid-state material, often referred to as a memristor. ReRAM bears some similarities to conductive-bridging RAM (CBRAM) and phase-change memory (PCM). CBRAM involves one electrode providing ions that dissolve readily in an electrolyte material, while PCM involves generating sufficient Joule heating to effect amorphous-to-crystalline or crystalline-to-amorphous phase changes.