Final topologyIn general topology and related areas of mathematics, the final topology (or coinduced, strong, colimit, or inductive topology) on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous. The quotient topology on a quotient space is a final topology, with respect to a single surjective function, namely the quotient map. The disjoint union topology is the final topology with respect to the inclusion maps.
Teichmüller spaceIn mathematics, the Teichmüller space of a (real) topological (or differential) surface , is a space that parametrizes complex structures on up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller. Each point in a Teichmüller space may be regarded as an isomorphism class of "marked" Riemann surfaces, where a "marking" is an isotopy class of homeomorphisms from to itself.
OrientabilityIn mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable.
K-equivalenceIn mathematics, -equivalence, or contact equivalence, is an equivalence relation between map germs. It was introduced by John Mather in his seminal work in Singularity theory in the 1960s as a technical tool for studying stable maps. Since then it has proved important in its own right. Roughly speaking, two map germs ƒ, g are -equivalent if ƒ−1(0) and g−1(0) are diffeomorphic. Two map germs are -equivalent if there is a diffeomorphism of the form Ψ(x,y) = (φ(x),ψ(x,y)), satisfying, and In other words, Ψ maps the graph of f to the graph of g, as well as the graph of the zero map to itself.
Homotopy fiberIn mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Zig-zag lemmaIn mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every . In an abelian category (such as the category of abelian groups or the category of vector spaces over a given field), let and be chain complexes that fit into the following short exact sequence: Such a sequence is shorthand for the following commutative diagram: where the rows are exact sequences and each column is a chain complex.
CohomologyIn mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
Higher-dimensional algebraIn mathematics, especially () , higher-dimensional algebra is the study of categorified structures. It has applications in nonabelian algebraic topology, and generalizes abstract algebra. Category theory#Higher-dimensional categories A first step towards defining higher dimensional algebras is the concept of of , followed by the more 'geometric' concept of double category. A higher level concept is thus defined as a of categories, or super-category, which generalises to higher dimensions the notion of – regarded as any structure which is an interpretation of Lawvere's axioms of the elementary theory of abstract categories (ETAC).
Acyclic modelIn algebraic topology, a discipline within mathematics, the acyclic models theorem can be used to show that two homology theories are isomorphic. The theorem was developed by topologists Samuel Eilenberg and Saunders MacLane. They discovered that, when topologists were writing proofs to establish equivalence of various homology theories, there were numerous similarities in the processes. Eilenberg and MacLane then discovered the theorem to generalize this process. It can be used to prove the Eilenberg–Zilber theorem; this leads to the idea of the .
Metric spaceIn mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane.