**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Metric space

Summary

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.
The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another.
Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and therefore admit the structure of a metric space, including Riemannian manifolds, normed vector spaces, and graphs. In abstract algebra, the p-adic numbers arise as elements of the completion of a metric structure on the rational numbers. Metric spaces are also studied in their own right in metric geometry and analysis on metric spaces.
Many of the basic notions of mathematical analysis, including balls, completeness, as well as uniform, Lipschitz, and Hölder continuity, can be defined in the setting of metric spaces. Other notions, such as continuity, compactness, and open and closed sets, can be defined for metric spaces, but also in the even more general setting of topological spaces.
To see the utility of different notions of distance, consider the surface of the Earth as a set of points. We can measure the distance between two such points by the length of the shortest path along the surface, "as the crow flies"; this is particularly useful for shipping and aviation.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (34)

Related publications (189)

Related concepts (56)

Related MOOCs (10)

Related courses (31)

Related units (6)

Related lectures (84)

Felix Hausdorff

Felix Hausdorff (ˈhaʊsdɔːrf , ˈhaʊzdɔːrf ; November 8, 1868 – January 26, 1942) was a German mathematician, pseudonym Paul Mongré, who is considered to be one of the founders of modern topology and who contributed significantly to set theory, descriptive set theory, measure theory, and functional analysis. Life became difficult for Hausdorff and his family after Kristallnacht in 1938. The next year he initiated efforts to emigrate to the United States, but was unable to make arrangements to receive a research fellowship.

Hausdorff dimension

In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension.

Vector space

In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

MATH-315: Topological groups

We study topological groups. Particular attention is devoted to compact and locally compact groups.

MATH-731(2): Topics in geometric analysis II

The goal of this course is to introduce the student to the basic notion of analysis on metric (measure) spaces, quasiconformal mappings, potential theory on metric spaces, etc. The subjects covered wi

MATH-220: Metric and topological spaces

A topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where the concept of nearness is measured by a distance function. Within this abs

Embedding in Metric Spaces

Explores embedding in metric spaces, discussing mappings, distances, and convergence.

Preimages in a Gluing Construction

Delves into preimages of closed sets in a disjoint union.

Lp Cone and Approximate Embeddings

Covers the concept of Lp cone and approximate embeddings in metric spaces.

Marcos Rubinstein, Farhad Rachidi-Haeri, Hamidreza Karami, Elias Per Joachim Le Boudec, Nicolas Mora Parra

Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...

2024Victor Panaretos, Yoav Zemel, Valentina Masarotto

We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...

Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...