Gauss's lawIn physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it states that the flux of the electric field out of an arbitrary closed surface is proportional to the electric charge enclosed by the surface, irrespective of how that charge is distributed.
Shift theoremIn mathematics, the (exponential) shift theorem is a theorem about polynomial differential operators (D-operators) and exponential functions. It permits one to eliminate, in certain cases, the exponential from under the D-operators. The theorem states that, if P(D) is a polynomial D-operator, then, for any sufficiently differentiable function y, To prove the result, proceed by induction. Note that only the special case needs to be proved, since the general result then follows by linearity of D-operators.
Change of variablesIn mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem. Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation (chain rule) or integration (integration by substitution).
Complex lamellar vector fieldIn vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl. The adjective "lamellar" derives from the noun "lamella", which means a thin layer.
Leibniz integral ruleIn calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative. It is named after Gottfried Leibniz.
EquipotentialIn mathematics and physics, an equipotential or isopotential refers to a region in space where every point is at the same potential. This usually refers to a scalar potential (in that case it is a level set of the potential), although it can also be applied to vector potentials. An equipotential of a scalar potential function in n-dimensional space is typically an (n − 1)-dimensional space. The del operator illustrates the relationship between a vector field and its associated scalar potential field.
Gaussian surfaceA Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.
Nabla symbol∇ The nabla symbol The nabla is a triangular symbol resembling an inverted Greek delta: or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, and was suggested by the encyclopedist William Robertson Smith to Peter Guthrie Tait in correspondence. The nabla symbol is available in standard HTML as ∇ and in LaTeX as \nabla. In Unicode, it is the character at code point U+2207, or 8711 in decimal notation, in the Mathematical Operators block.
Vector operatorA vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: The Laplacian operates on a scalar field, producing a scalar field: Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result.
Vector fields in cylindrical and spherical coordinatesNote: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources. Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.