Théorème de Gauss (physique)En physique, le théorème de Gauss relie le flux d'un champ de vecteurs sortant d'une surface fermée aux entités à l'origine du champ (charges électriques pour le champ électrique, masses pour le champ gravitationnel). Un corollaire notable du théorème est que les entités extérieures à la surface ne contribuent pas au flux.
Shift theoremIn mathematics, the (exponential) shift theorem is a theorem about polynomial differential operators (D-operators) and exponential functions. It permits one to eliminate, in certain cases, the exponential from under the D-operators. The theorem states that, if P(D) is a polynomial D-operator, then, for any sufficiently differentiable function y, To prove the result, proceed by induction. Note that only the special case needs to be proved, since the general result then follows by linearity of D-operators.
Changement de variable (simplification algébrique)Le changement de variables est un procédé mathématique qui consiste à remplacer une variable ou même une fonction par une autre fonction de celle-ci ou d'un autre paramètre. Ce procédé est un des outils principaux pour la simplification de formules algébriques ou, plus généralement, d'équations. Par exemple, c'est par un changement de variable qu'on peut obtenir l'équation de Weierstrass d'une courbe elliptique. On peut aussi appliquer ce procédé pour simplifier le calcul d'une somme ou d'un produit (par exemple, pour permettre le regroupement de termes similaires).
Complex lamellar vector fieldIn vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl. The adjective "lamellar" derives from the noun "lamella", which means a thin layer.
Leibniz integral ruleIn calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative. It is named after Gottfried Leibniz.
ÉquipotentielleUne équipotentielle, ou surface de niveau d'un champ (gravitationnel, électrique), est l'ensemble des points où un potentiel scalaire prend une même valeur numérique. Les équipotentielles sont perpendiculaires aux lignes de champ et plus les équipotentielles sont resserrées, plus le champ est intense. Dans un champ képlérien radial, les équipotentielles sont des sphères. Il existe de nombreux modèles de potentiel pour décrire des objets comme les amas globulaires, les galaxies Le géoïde est une équipotentielle du champ de pesanteur terrestre.
Surface de GaussEn électromagnétisme, une surface de Gauss est une surface imaginaire de l'espace utilisée dans le calcul des champs électriques par le théorème de Gauss. Puisque le théorème de Gauss peut être utilisé dans le cas de certaines symétries particulières du champ électrique, on distingue principalement trois classes de surfaces de Gauss. vignette|Sphère de Gauss autour d'une charge ponctuelle. Utilisée pour des objets chargés de symétrie sphérique, par exemple une charge ponctuelle.
Nabla symbol∇ The nabla symbol The nabla is a triangular symbol resembling an inverted Greek delta: or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, and was suggested by the encyclopedist William Robertson Smith to Peter Guthrie Tait in correspondence. The nabla symbol is available in standard HTML as ∇ and in LaTeX as \nabla. In Unicode, it is the character at code point U+2207, or 8711 in decimal notation, in the Mathematical Operators block.
Vector operatorA vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: The Laplacian operates on a scalar field, producing a scalar field: Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result.
Vector fields in cylindrical and spherical coordinatesNote: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources. Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.