A brushed DC electric motor is an internally commutated electric motor designed to be run from a direct current power source and utilizing an electric brush for contact.
Brushed motors were the first commercially important application of electric power to driving mechanical energy, and DC distribution systems were used for more than 100 years to operate motors in commercial and industrial buildings. Brushed DC motors can be varied in speed by changing the operating voltage or the strength of the magnetic field. Depending on the connections of the field to the power supply, the speed and torque characteristics of a brushed motor can be altered to provide steady speed or speed inversely proportional to the mechanical load. Brushed motors continue to be used for electrical propulsion, cranes, paper machines and steel rolling mills. Since the brushes wear down and require replacement, brushless DC motors using power electronic devices have displaced brushed motors from many applications.
The following graphics illustrate a simple, two-pole, brushed, DC motor.
When a current passes through the coil wound around a soft iron core situated inside an external magnetic field, the side of the positive pole is acted upon by an upwards force, while the other side is acted upon by a downward force. According to Fleming's left hand rule, the forces cause a turning effect on the coil, making it rotate. To make the motor rotate in a constant direction, "direct current" commutators make the current reverse in direction every half a cycle (in a two-pole motor) thus causing the motor to continue to rotate in the same direction.
A problem with the motor shown above is that when the plane of the coil is parallel to the magnetic field—i.e. when the rotor poles are 90 degrees from the stator poles—the torque is zero. In the pictures above, this occurs when the core of the coil is horizontal—the position it is just about to reach in the second-to-last picture on the right. The motor would not be able to start in this position.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'étudiant sera capable de concevoir, de réaliser et de programmer une électronique complète de commande de moteur ou d'actionneur. Il saura appliquer la théorie de la commande de moteur sur des systè
The course is dealing with high performance drives and methods to control various electrical machines by means of power electronic converter and advanced control methods.
A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that exclusively uses chemical energy stored in rechargeable battery packs, with no secondary source of propulsion (a hydrogen fuel cell, internal combustion engine, etc.). BEVs use electric motors and motor controllers instead of internal combustion engines (ICEs) for propulsion. They derive all power from battery packs and thus have no internal combustion engine, fuel cell, or fuel tank.
A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor. DC motors were the first form of motors widely used, as they could be powered from existing direct-current lighting power distribution systems.
A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor.
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Principes de fonctionnement, construction, calcul et applications des moteurs electriques.
Explores the study of non-linearly coupled waves and wave energy in dispersive media, focusing on Stimulated Raman Scattering and saturation mechanisms.
Delves into the effects of varying voltage and current limitation on a DC motor.
Demonstrates a DC motor with separate excitation and explains why it accelerates unexpectedly when the excitation is cut off.
This thesis reports high energy-density electrostatic actuators for use in soft robotics. This thesis has two main parts: a) a detailed study of electro-adhesion using microfabricated electrodes, and b) a flexi-ble fiber-shaped linear motor.Electro-adhesio ...
While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher -order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we sho ...
The control of movement and orientation of gas-phase molecules has become the focus of many research areas in molecular physics. Here, ND3 molecules are polarized in a segmented, curved electrostatic guide and adiabatically aligned inside a rotatable mass ...