A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.
The construction of a brushless motor system is typically similar to a permanent magnet synchronous motor (PMSM), but can also be a switched reluctance motor, or an induction (asynchronous) motor. They may also use neodymium magnets and be outrunners (the stator is surrounded by the rotor), inrunners (the rotor is surrounded by the stator), or axial (the rotor and stator are flat and parallel).
The advantages of a brushless motor over brushed motors are high power-to-weight ratio, high speed, nearly instantaneous control of speed (rpm) and torque, high efficiency, and low maintenance. Brushless motors find applications in such places as computer peripherals (disk drives, printers), hand-held power tools, and vehicles ranging from model aircraft to automobiles. In modern washing machines, brushless DC motors have allowed replacement of rubber belts and gearboxes by a direct-drive design.
Brushed DC motors were invented in the 19th century and are still common. Brushless DC motors were made possible by the development of solid state electronics in the 1960s.
An electric motor develops torque by keeping the magnetic fields of the rotor (the rotating part of the machine) and the stator (the fixed part of the machine) misaligned. One or both sets of magnets are electromagnets, made of a coil of wire wound around an iron core. DC running through the wire winding creates the magnetic field, providing the power that runs the motor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours aborde les principales méthodes pour l'analyse de systèmes électromécaniques. Une étude des grandeurs physiques magnétiques est suivie par la conversion de l'énergie électrique en énergie méc
A servomotor (or servo motor) is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity, and acceleration. It consists of a suitable motor coupled to a sensor for position feedback. It also requires a relatively sophisticated controller, often a dedicated module designed specifically for use with servomotors. Servomotors are not a specific class of motor, although the term servomotor is often used to refer to a motor suitable for use in a closed-loop control system.
A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor's position can be commanded to move and hold at one of these steps without any position sensor for feedback (an open-loop controller), as long as the motor is correctly sized to the application in respect to torque and speed. Switched reluctance motors are very large stepping motors with a reduced pole count, and generally are closed-loop commutated.
A radio-controlled model (or RC model) is a model that is steerable with the use of radio control. All types of model vehicles have had RC systems installed in them, including ground vehicles, boats, planes, helicopters and even submarines and scale railway locomotives. Radio control has been around since Nikola Tesla demonstrated a remote control boat in 1898. World War II saw increased development in radio control technology. The Luftwaffe used controllable winged bombs for targeting Allied ships.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Explores the study of non-linearly coupled waves and wave energy in dispersive media, focusing on Stimulated Raman Scattering and saturation mechanisms.
Explores electric motor principles, linearity, control systems, active suspensions, and Laplace transforms.
Explores simulation of common structures and control of dynamic systems through friction and elasticity constants.
This thesis reports high energy-density electrostatic actuators for use in soft robotics. This thesis has two main parts: a) a detailed study of electro-adhesion using microfabricated electrodes, and b) a flexi-ble fiber-shaped linear motor.Electro-adhesio ...
The control of movement and orientation of gas-phase molecules has become the focus of many research areas in molecular physics. Here, ND3 molecules are polarized in a segmented, curved electrostatic guide and adiabatically aligned inside a rotatable mass ...
Aip Publishing2024
,
The different receptors in human skin show not only diversity in the stimuli to which they respond, but also variable sensitivity and directionality. This is often determined by their location or morphology, and can play an important role in filtering or a ...