Summary
In materials science, the Burgers vector, named after Dutch physicist Jan Burgers, is a vector, often denoted as b, that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice. The vector's magnitude and direction is best understood when the dislocation-bearing crystal structure is first visualized without the dislocation, that is, the perfect crystal structure. In this perfect crystal structure, a rectangle whose lengths and widths are integer multiples of a (the unit cell edge length) is drawn encompassing the site of the original dislocation's origin. Once this encompassing rectangle is drawn, the dislocation can be introduced. This dislocation will have the effect of deforming, not only the perfect crystal structure, but the rectangle as well. The said rectangle could have one of its sides disjoined from the perpendicular side, severing the connection of the length and width line segments of the rectangle at one of the rectangle's corners, and displacing each line segment from each other. What was once a rectangle before the dislocation was introduced is now an open geometric figure, whose opening defines the direction and magnitude of the Burgers vector. Specifically, the breadth of the opening defines the magnitude of the Burgers vector, and, when a set of fixed coordinates is introduced, an angle between the termini of the dislocated rectangle's length line segment and width line segment may be specified. When calculating the Burgers vector practically, one may draw a rectangular counterclockwise circuit (Burgers circuit) from a starting point to enclose the dislocation (see the picture above). The Burgers vector will be the vector to complete the circuit, i.e., from the end to the start of the circuit. The direction of the vector depends on the plane of dislocation, which is usually on one of the closest-packed crystallographic planes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
MSE-310: Deformation of materials
Présentation des mécanismes de déformation des matériaux inorganiques: élasticité, plasticité, fluage.
PHYS-307: Physics of materials
This course illustrates some selected chapters of materials physics needed to understand the mechanical and structural properties of solids. This course deals primarily with the physics of dislocation
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Show more
Related publications (103)