**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Coefficient of variation

Summary

In probability theory and statistics, the coefficient of variation (COV), also known as Normalized Root-Mean-Square Deviation (NRMSD), Percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is defined as the ratio of the standard deviation to the mean (or its absolute value, , and often expressed as a percentage ("%RSD"). The CV or RSD is widely used in analytical chemistry to express the precision and repeatability of an assay. It is also commonly used in fields such as engineering or physics when doing quality assurance studies and ANOVA gauge R&R, by economists and investors in economic models, and in neuroscience.
The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean ,
It shows the extent of variability in relation to the mean of the population.
The coefficient of variation should be computed only for data measured on scales that have a meaningful zero (ratio scale) and hence allow relative comparison of two measurements (i.e., division of one measurement by the other). The coefficient of variation may not have any meaning for data on an interval scale. For example, most temperature scales (e.g., Celsius, Fahrenheit etc.) are interval scales with arbitrary zeros, so the computed coefficient of variation would be different depending on the scale used. On the other hand, Kelvin temperature has a meaningful zero, the complete absence of thermal energy, and thus is a ratio scale. In plain language, it is meaningful to say that 20 Kelvin is twice as hot as 10 Kelvin, but only in this scale with a true absolute zero. While a standard deviation (SD) can be measured in Kelvin, Celsius, or Fahrenheit, the value computed is only applicable to that scale. Only the Kelvin scale can be used to compute a valid coefficient of variability.
Measurements that are log-normally distributed exhibit stationary CV; in contrast, SD varies depending upon the expected value of measurements.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (32)

Related lectures (50)

Related publications (285)

Related people (32)

Related units (11)

Related concepts (17)

Related MOOCs (1)

Ontological neighbourhood

Cement Chemistry and Sustainable Cementitious Materials

Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.

MICRO-110: Design of experiments

This course provides an introduction to experimental statistics, including use of population statistics to characterize experimental results, use of comparison statistics and hypothesis testing to eva

MGT-301: Foundations in financial economics

The aim of this course is to expose EPFL bachelor students to some of the main areas in financial economics. The course will be organized around six themes. Students will obtain both practical insight

MGT-482: Principles of finance

The course provides a market-oriented framework for analyzing the major financial decisions made by firms. It provides an introduction to valuation techniques, investment decisions, asset valuation, f

Statistical dispersion

In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered. Dispersion is contrasted with location or central tendency, and together they are the most used properties of distributions.

Level of measurement

Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio. This framework of distinguishing levels of measurement originated in psychology and has since had a complex history, being adopted and extended in some disciplines and by some scholars, and criticized or rejected by others.

Normalization (statistics)

In statistics and applications of statistics, normalization can have a range of meanings. In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment. In the case of normalization of scores in educational assessment, there may be an intention to align distributions to a normal distribution.

Seven-Eleven Japan Discussion: Supply Chain Excellence

Explores Seven-Eleven Japan's operational excellence, focusing on data collection, distribution, inventory management, and value creation strategies.

Investments: Portfolio Selection and Asset Pricing

Covers portfolio selection, asset pricing, market efficiency, and risk management in investments.

Portfolio Optimization: Risk and Return

Explores the tradeoff between risk and return in portfolios, the benefits of diversification, and the impact of correlation on portfolio risk.

Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Xin Chen, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Abhisek Datta, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ioannis Evangelou, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Anton Petrov, Xin Sun, Xin Gao, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal

A measurement of the Higgs boson (H) production via vector boson fusion (VBF) and its decay into a bottom quark-antiquark pair (b (b) over bar) is presented using proton-proton collision data recorded by the CMS experiment at root s = 13TeV and correspondi ...

Jan Skaloud, Davide Antonio Cucci, Kenneth Joseph Paul

This paper proposes a novel method to improve georeferencing of airborne laser scanning by improved trajectory estimation using Vehicle Dynamic Model. In Vehicle Dynamic Model (VDM), the relationship between the dynamics of the platform and control inputs ...

2023Climate-change-induced extreme weather events increase heat-related mortality and health risks for urbanites, which may also affect urbanites’ expressed happiness (EH) and well-being. However, the links among EH, climate, and socioeconomic factors remain u ...

2023