Beach nourishment (also referred to as beach renourishment, beach replenishment, or sand replenishment) describes a process by which sediment, usually sand, lost through longshore drift or erosion is replaced from other sources. A wider beach can reduce storm damage to coastal structures by dissipating energy across the surf zone, protecting upland structures and infrastructure from storm surges, tsunamis and unusually high tides. Beach nourishment is typically part of a larger integrated coastal zone management aimed at coastal defense. Nourishment is typically a repetitive process since it does not remove the physical forces that cause erosion but simply mitigates their effects.
The first nourishment project in the United States was at Coney Island, New York in 1922 and 1923. It is now a common shore protection measure used by public and private entities.
The first nourishment project in the U.S. was constructed at Coney Island, New York in 1922–1923.
Before the 1970s, nourishment involved directly placing sand on the beach and dunes. Since then more shoreface nourishments have been carried out, which rely on the forces of the wind, waves and tides to further distribute the sand along the shore and onto the beaches and dunes.
The number and size of nourishment projects has increased significantly due to population growth and projected relative sea-level rise.
Beach erosion is a specific subset of coastal erosion, which in turn is a type of bioerosion which alters coastal geography through beach morphodynamics. There are numerous incidences of the modern recession of beaches, mainly due to a gradient in longshore drift and coastal development hazards.
Beaches can erode naturally or due to human impact (beach theft/sand mining).
Erosion is a natural response to storm activity. During storms, sand from the visible beach submerges to form sand bars that protect the beach. Submersion is only part of the cycle. During calm weather smaller waves return sand from bars to the visible beach surface in a process called accretion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands. Protection against rising sea levels in the 21st century is crucial, as sea level rise accelerates due to climate change. Changes in sea level damage beaches and coastal systems are expected to rise at an increasing rate, causing coastal sediments to be disturbed by tidal energy. Coastal zones occupy less than 15% of the Earth's land area, while they host more than 40% of the world population. Nearly 1.
A groyne (in the U.S. groin) is a rigid hydraulic structure built perpendicularly from an ocean shore (in coastal engineering) or a river bank, interrupting water flow and limiting the movement of sediment. It is usually made out of wood, concrete, or stone. In the ocean, groynes create beaches, prevent beach erosion caused by longshore drift where this is the dominant process and facilitate beach nourishment. There is also often cross-shore movement which if longer than the groyne will limit its effectiveness.
A raised beach, coastal terrace, or perched coastline is a relatively flat, horizontal or gently inclined surface of marine origin, mostly an old abrasion platform which has been lifted out of the sphere of wave activity (sometimes called "tread"). Thus, it lies above or under the current sea level, depending on the time of its formation. It is bounded by a steeper ascending slope on the landward side and a steeper descending slope on the seaward side (sometimes called "riser").
Le cours offre des méthodes de calcul hydraulique pour des problèmes d'écoulements non permanents tels que les crues, les vagues, et les ruptures de barrage. L'accent est mis sur la compréhension phys
Laboratory and field studies investigating the mutual interaction between riparian vegetation dynamics and river morphodynamics have revealed that riparian vegetation may play an important role in the evolution of channel beds and river banks. In order to ...
2022
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
Reservoir sedimentation is one of the main challenges in the sustainable operation of large reservoirs because it causes volume loss, affecting hydropower production capacity, dam safety, and flood management. To ensure the sustainability of deep reservoir ...