Related concepts (48)
J-invariant
In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that Rational functions of j are modular, and in fact give all modular functions. Classically, the j-invariant was studied as a parameterization of elliptic curves over C, but it also has surprising connections to the symmetries of the Monster group (this connection is referred to as monstrous moonshine).
Elliptic function
In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass -function. Further development of this theory led to hyperelliptic functions and modular forms.
Fundamental pair of periods
In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. A fundamental pair of periods is a pair of complex numbers such that their ratio is not real. If considered as vectors in , the two are not collinear. The lattice generated by and is This lattice is also sometimes denoted as to make clear that it depends on and It is also sometimes denoted by or or simply by The two generators and are called the lattice basis.
L-function
In mathematics, an L-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An L-series is a Dirichlet series, usually convergent on a half-plane, that may give rise to an L-function via analytic continuation. The Riemann zeta function is an example of an L-function, and one important conjecture involving L-functions is the Riemann hypothesis and its generalization. The theory of L-functions has become a very substantial, and still largely conjectural, part of contemporary analytic number theory.
Cubic plane curve
In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F(x, y, z) = 0 applied to homogeneous coordinates (x:y:z) for the projective plane; or the inhomogeneous version for the affine space determined by setting z = 1 in such an equation. Here F is a non-zero linear combination of the third-degree monomials x^3, y^3, z^3, x^2 y, x^2 z, y^2 x, y^2 z, z^2 x, z^2 y, xyz These are ten in number; therefore the cubic curves form a projective space of dimension 9, over any given field K.
Hyperelliptic curve
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0). A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions.
Algebraic function field
In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k. As an example, in the polynomial ring k [X,Y] consider the ideal generated by the irreducible polynomial Y 2 − X 3 and form the field of fractions of the quotient ring k [X,Y]/(Y 2 − X 3).
Degree of a field extension
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Diophantine geometry
In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".
Generalized Riemann hypothesis
The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.