In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry.
Four theorems in Diophantine geometry which are of fundamental importance include:
Mordell–Weil theorem
Roth's theorem
Siegel's theorem
Faltings's theorem
Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry". The traditional arrangement of material on Diophantine equations was by degree and number of variables, as in Mordell's Diophantine Equations (1969). Mordell's book starts with a remark on homogeneous equations f = 0 over the rational field, attributed to C. F. Gauss, that non-zero solutions in integers (even primitive lattice points) exist if non-zero rational solutions do, and notes a caveat of L. E. Dickson, which is about parametric solutions. The Hilbert–Hurwitz result from 1890 reducing the Diophantine geometry of curves of genus 0 to degrees 1 and 2 (conic sections) occurs in Chapter 17, as does Mordell's conjecture. Siegel's theorem on integral points occurs in Chapter 28. Mordell's theorem on the finite generation of the group of rational points on an elliptic curve is in Chapter 16, and integer points on the Mordell curve in Chapter 26.
In a hostile review of Lang's book, Mordell wrote:
In recent times, powerful new geometric ideas and methods have been developed by means of which important new arithmetical theorems and related results have been found and proved and some of these are not easily proved otherwise. Further, there has been a tendency to clothe the old results, their extensions, and proofs in the new geometrical language. Sometimes, however, the full implications of results are best described in a geometrical setting. Lang has these aspects very much in mind in this book, and seems to miss no opportunity for geometric presentation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Enrico Bombieri (born 26 November 1940) is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently Professor Emeritus in the School of Mathematics at the Institute for Advanced Study in Princeton, New Jersey. Bombieri won the Fields Medal in 1974 for his contributions to large sieve mathematics, conceptualized by Linnick 1941, and its application to the distribution of prime numbers.
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field. Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows: When , there are either no points or infinitely many.
In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point. Understanding rational points is a central goal of number theory and Diophantine geometry. For example, Fermat's Last Theorem may be restated as: for n > 2, the Fermat curve of equation has no other rational points than (1, 0), (0, 1), and, if n is even, (–1, 0) and (0, –1).
Explores classic regulator systems, polynomial degrees of freedom, servo model modifications, and system adjustment through simplification and zero invoicing.
Covers digital controller design, focusing on discrete-time models and the pole placement technique.
Covers the design of polynomial regulators using the RST method.
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...