**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Bernoulli process

Summary

In probability and statistics, a Bernoulli process (named after Jacob Bernoulli) is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variables Xi are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable Xi in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution. Much of what can be said about the Bernoulli process can also be generalized to more than two outcomes (such as the process for a six-sided die); this generalization is known as the Bernoulli scheme.
The problem of determining the process, given only a limited sample of Bernoulli trials, may be called the problem of checking whether a coin is fair.
A Bernoulli process is a finite or infinite sequence of independent random variables X1, X2, X3, ..., such that
for each i, the value of Xi is either 0 or 1;
for all values of i, the probability p that Xi = 1 is the same.
In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.
Independence of the trials implies that the process is memoryless. Given that the probability p is known, past outcomes provide no information about future outcomes. (If p is unknown, however, the past informs about the future indirectly, through inferences about p.)
If the process is infinite, then from any point the future trials constitute a Bernoulli process identical to the whole process, the fresh-start property.
The two possible values of each Xi are often called "success" and "failure". Thus, when expressed as a number 0 or 1, the outcome may be called the number of successes on the ith "trial".
Two other common interpretations of the values are true or false and yes or no. Under any interpretation of the two values, the individual variables Xi may be called Bernoulli trials with parameter p.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (17)

Related concepts (32)

Related lectures (149)

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

CS-456: Artificial neural networks/reinforcement learning

Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into influent

CIVIL-210: Fluids mechanics (For GC)

Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat

In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process.

In probability and statistics, a Bernoulli process (named after Jacob Bernoulli) is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variables Xi are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable Xi in the sequence is associated with a Bernoulli trial or experiment.

In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics (in particular, most non-dissipative systems) as well as systems in thermodynamic equilibrium.

Smooth Dynamics: Bernoulli and K Properties

Explores Bernoulli and K properties in smooth dynamics, including equivalence, examples, and implications.

Biclustering & latent variables: statistical analysis of network data

Explores biclustering techniques and latent variables in network data analysis.

Parameter Estimation

Discusses parameter estimation, including checks, quality, distribution, and statistical properties of estimates.