In probability and statistics, a Bernoulli process (named after Jacob Bernoulli) is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variables Xi are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness). Every variable Xi in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution. Much of what can be said about the Bernoulli process can also be generalized to more than two outcomes (such as the process for a six-sided die); this generalization is known as the Bernoulli scheme. The problem of determining the process, given only a limited sample of Bernoulli trials, may be called the problem of checking whether a coin is fair. A Bernoulli process is a finite or infinite sequence of independent random variables X1, X2, X3, ..., such that for each i, the value of Xi is either 0 or 1; for all values of i, the probability p that Xi = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials. Independence of the trials implies that the process is memoryless. Given that the probability p is known, past outcomes provide no information about future outcomes. (If p is unknown, however, the past informs about the future indirectly, through inferences about p.) If the process is infinite, then from any point the future trials constitute a Bernoulli process identical to the whole process, the fresh-start property. The two possible values of each Xi are often called "success" and "failure". Thus, when expressed as a number 0 or 1, the outcome may be called the number of successes on the ith "trial". Two other common interpretations of the values are true or false and yes or no. Under any interpretation of the two values, the individual variables Xi may be called Bernoulli trials with parameter p.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (19)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
CS-456: Deep reinforcement learning
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
CIVIL-210: Fluids mechanics (For GC)
Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat
Show more
Related lectures (54)
Biclustering & latent variables: statistical analysis of network data
Explores biclustering techniques and latent variables in network data analysis.
Advanced Probabilities: Random Variables & Expected Values
Explores advanced probabilities, random variables, and expected values, with practical examples and quizzes to reinforce learning.
Variance: Definition, Examples, and Theorems
Covers the definition of variance, examples, theorems, and applications in probability theory.
Show more
Related publications (34)
Related concepts (17)
Bernoulli trial
In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). The mathematical formalisation of the Bernoulli trial is known as the Bernoulli process.
Bernoulli distribution
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability . Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are boolean-valued: a single bit whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q.
Measure-preserving dynamical system
In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics (in particular, most non-dissipative systems) as well as systems in thermodynamic equilibrium.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.