**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Double Quasi-Poisson Algebras are Pre-Calabi-Yau

Abstract

In this article, we prove that double quasi-Poisson algebras, which are noncommutative analogues of quasi-Poisson manifolds, naturally give rise to pre-Calabi-Yau algebras. This extends one of the main results in [11], where a correspondence between certain pre-Calabi-Yau algebras and double Poisson algebras was found (see also [13, 12, 10]). However, a major difference between the pre-Calabi-Yau algebra constructed in the mentioned articles and the one constructed in this work is that the higher multiplications indexed by even integers of the underlying -algebra structure of the pre-Calabi-Yau algebra associated with double quasi-Poisson algebra do not vanish, but are given by nice cyclic expressions multiplied by explicitly determined coefficients involving the Bernoulli numbers.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (25)

Related publications (31)

Lie algebra

In mathematics, a Lie algebra (pronounced liː ) is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. Otherwise said, a Lie algebra is an algebra over a field where the multiplication operation is now called Lie bracket and has two additional properties: it is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The Lie bracket does not need to be associative, meaning that the Lie algebra can be non associative.

Algebraic structure

In mathematics, an algebraic structure consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities, known as axioms, that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures.

Algebra

Algebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.

Ontological neighbourhood

We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...

,

We determine the dimension of every simple module for the algebra of the monoid of all relations on a finite set (i.e. Boolean matrices). This is in fact the same question as the determination of the dimension of every evaluation of a simple correspondence ...

2020Grégoire Olivier Mathys, Matthew Thomas Walters, Alexandre Mathieu Frédéric Belin

We study correlation functions involving generalized ANEC operators of the form integral dx-x-n+2T--x -> in four dimensions. We compute two, three, and ...

2021