Summary
Humic substances (HS) are coloured recalcitrant organic compounds naturally formed during long-term decomposition and transformation of biomass residues. The colour of humic substances varies from yellow to brown to black. Humic substances represent the major part of organic matter in soil, peat, coal and sediments and are important components of dissolved natural organic matter (NOM) in lakes (especially, dystrophic lakes), rivers and sea water. "Humic substances" is an umbrella term covering humic acid, fulvic acid, humin and hymatomelanic acid which differ in solubility. By definition, humic acid is soluble in water at neutral and alkaline pH, but insoluble at acidic pH < 2. Fulvic acid is soluble in water at any pH. Humin is not soluble in water at any pH. Hymatomelanic acid is part of humic acid that is soluble in ethanol. This definition of humic substances is largely operational. It is rooted in the history of soil science and, more precisely, in the tradition of alkaline extraction, which dates back to 1786, when Franz Karl Achard treated peat with a solution of potassium hydroxide and, after subsequent addition of an acid, obtained an amorphous dark precipitate (i.e., humic acid). Aquatic humic substances were isolated for the first time later, in 1806, from spring water by Jöns Jakob Berzelius. In terms of chemistry, fulvic acid, humic acid and humin share more similarities than differences and represent a continuum of humic molecules. All of them are constructed from similar aromatic, polyaromatic, aliphatic and carbohydrate units and contain the same functional groups (mainly, carboxylic, phenolic and ester) albeit in varying proportions. Water solubility of humic substances is primarily governed by interplay of two factors: the amount of ionizable functional groups (mainly, carboxylic) and the molecular weight. In general, fulvic acid has higher amount of carboxylic groups and lower average molecular weight than humic acid. However, molecular weight distributions of humic and fulvic acids significantly overlap.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.