Supercommutative algebraIn mathematics, a supercommutative (associative) algebra is a superalgebra (i.e. a Z2-graded algebra) such that for any two homogeneous elements x, y we have where |x| denotes the grade of the element and is 0 or 1 (in Z_2) according to whether the grade is even or odd, respectively. Equivalently, it is a superalgebra where the supercommutator always vanishes. Algebraic structures which supercommute in the above sense are sometimes referred to as skew-commutative associative algebras to emphasize the anti-commutation, or, to emphasize the grading, graded-commutative or, if the supercommutativity is understood, simply commutative.
Center (ring theory)In algebra, the center of a ring R is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center". If R is a ring, then R is an associative algebra over its center. Conversely, if R is an associative algebra over a commutative subring S, then S is a subring of the center of R, and if S happens to be the center of R, then the algebra R is called a central algebra.
Anticommutative propertyIn mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the inverse of the result with unswapped arguments. The notion inverse refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of a − b gives b − a = −(a − b); for example, 2 − 10 = −(10 − 2) = −8.
Lie superalgebraIn mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions (but this is not always true; for example, the BRST supersymmetry is the other way around).