In mathematics, anticommutativity is a specific property of some non-commutative mathematical operations. Swapping the position of two arguments of an antisymmetric operation yields a result which is the inverse of the result with unswapped arguments. The notion inverse refers to a group structure on the operation's codomain, possibly with another operation. Subtraction is an anticommutative operation because commuting the operands of a − b gives b − a = −(a − b); for example, 2 − 10 = −(10 − 2) = −8. Another prominent example of an anticommutative operation is the Lie bracket.
In mathematical physics, where symmetry is of central importance, these operations are mostly called antisymmetric operations, and are extended in an associative setting to cover more than two arguments.
If are two abelian groups, a bilinear map is anticommutative if for all we have
More generally, a multilinear map is anticommutative if for all we have
where is the sign of the permutation .
If the abelian group has no 2-torsion, implying that if then , then any anticommutative bilinear map satisfies
More generally, by transposing two elements, any anticommutative multilinear map satisfies
if any of the are equal; such a map is said to be alternating. Conversely, using multilinearity, any alternating map is anticommutative. In the binary case this works as follows: if is alternating then by bilinearity we have
and the proof in the multilinear case is the same but in only two of the inputs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations.
In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product and the Lie bracket operation both satisfy the Jacobi identity.
In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries.
Laser-induced fluorescence, resonant two-photon ionization, UV-UV hole burning, UV depletion, and single vibronic level fluorescence (SVLF) spectra of jet-cooled diphenylmethane (DPM) have been recorded over the 37 300 - 38 400 cm(-1) region that encompass ...
2008
, ,
Methods for direct data-driven tuning of the parameters of precompensators for LPV systems are developed. Since the commutativity property is not always satisfied for LPV systems, previously proposed methods for LTI systems that use this property cannot be ...
Methods for direct data-driven tuning of the parameters of precompensators for LPV systems are developed. Since the commutativity property is not always satisfied for LPV systems, previously proposed methods for LTI systems that use this property cannot be ...