Triethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name the compound has the formula Al2(C2H5)6 (abbreviated as Al2Et6 or TEA). This colorless liquid is pyrophoric. It is an industrially important compound, closely related to trimethylaluminium.
The structure and bonding in Al2R6 and diborane are analogous (R = alkyl). Referring to Al2Me6, the Al-C(terminal) and Al-C(bridging) distances are 1.97 and 2.14 Å, respectively. The Al center is tetrahedral. The carbon atoms of the bridging ethyl groups are each surrounded by five neighbors: carbon, two hydrogen atoms and two aluminium atoms. The ethyl groups interchange readily intramolecularly. At higher temperatures, the dimer cracks into monomeric AlEt3.
Triethylaluminium can be formed via several routes. The discovery of an efficient route was a significant technological achievement. The multistep process uses aluminium metal, hydrogen gas, and ethylene, summarized as follows:
2 Al + 3 H2 + 6 C2H4 → Al2Et6
Because of this efficient synthesis, triethylaluminium is one of the most available organoaluminium compounds.
Triethylaluminium can also be generated from ethylaluminium sesquichloride (Al2Cl3Et3), which arises by treating aluminium powder with chloroethane. Reduction of ethylaluminium sesquichloride with an alkali metal such as sodium gives triethylaluminium:
6 Al2Cl3Et3 + 18 Na → 3 Al2Et6 + 6 Al + 18 NaCl
The Al–C bonds of triethylaluminium are polarized to such an extent that the carbon is easily protonated, releasing ethane:
Al2Et6 + 6 HX → 2 AlX3 + 6 EtH
For this reaction, even weak acids can be employed such as terminal acetylenes and alcohols.
The linkage between the pair of aluminium centres is relatively weak and can be cleaved by Lewis bases (L) to give adducts with the formula AlEt3L:
Al2Et6 + 2 L → 2 LAlEt3
Triethylaluminium is used industrially as an intermediate in the production of fatty alcohols, which are converted to detergents.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Falcon Heavy is a partially reusable super heavy-lift launch vehicle that can carry cargo into Earth orbit, and beyond. It is designed, manufactured and launched by American aerospace company SpaceX. The rocket consists of a center core on which two Falcon 9 boosters are attached, and a second stage on top of the center core. Falcon Heavy has the second highest payload capacity of any currently operational launch vehicle behind NASA's Space Launch System, and the fourth-highest capacity of any rocket to reach orbit, trailing behind the SLS, Energia and the Saturn V.
Organoaluminium chemistry is the study of compounds containing bonds between carbon and aluminium. It is one of the major themes within organometallic chemistry. Illustrative organoaluminium compounds are the dimer trimethylaluminium, the monomer triisobutylaluminium, and the titanium-aluminium compound called Tebbe's reagent. The behavior of organoaluminium compounds can be understood in terms of the polarity of the C−Al bond and the high Lewis acidity of the three-coordinated species.
Trimethylaluminium is one of the simplest examples of an organoaluminium compound. Despite its name it has the formula Al2(CH3)6 (abbreviated as Al2Me6 or TMA), as it exists as a dimer. This colorless liquid is pyrophoric. It is an industrially important compound, closely related to triethylaluminium. The structure and bonding in Al2R6 and diborane are analogous (R = alkyl). In Al2Me6, the Al-C(terminal) and Al-C(bridging) distances are 1.97 and 2.14 Å, respectively. The Al center is tetrahedral.
The synthesis of five half sandwich ruthenium(II) trichlorogermyl complexes of the type [(η6-Arene)Ru(PR3)Cl(GeCl3)] (PR3 = Phosphane and phosphite ligands; Arene = p-cymene or C6H5-OC2H4OH) is reported: [(η6-p-cymene)Ru(P(OMe)3)Cl(GeCl3)] (1), [(η6-p-cyme ...
2019
,
The synthesis of the alkoxide [OC(tBu)(CF3)2]− by the reaction of tBuM-reagents (M = Li; MgX) with hexafluoroacetone was attempted. This alkoxide was anticipated to be a good building block for novel weakly coordinating anions. However, in all attempted sy ...
Substantial signal enhancements achieved by using parahydrogen in catalytic hydrogenations are powerful tools for mechanistic studies of chemical reactions involving molecular H-2. Potentially, this technique can be extended to other reaction classes, prov ...