Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Peptide nucleic acid (PNA) is an artificially synthesized polymer similar to DNA or RNA. Synthetic peptide nucleic acid oligomers have been used in recent years in molecular biology procedures, diagnostic assays, and antisense therapies. Due to their higher binding strength, it is not necessary to design long PNA oligomers for use in these roles, which usually require oligonucleotide probes of 20–25 bases. The main concern of the length of the PNA-oligomers is to guarantee the specificity. PNA oligomers also show greater specificity in binding to complementary DNAs, with a PNA/DNA base mismatch being more destabilizing than a similar mismatch in a DNA/DNA duplex. This binding strength and specificity also applies to PNA/RNA duplexes. PNAs are not easily recognized by either nucleases or proteases, making them resistant to degradation by enzymes. PNAs are also stable over a wide pH range. Though an unmodified PNA cannot readily cross the cell membrane to enter the cytosol, covalent coupling of a cell penetrating peptide to a PNA can improve cytosolic delivery. PNA is not known to occur naturally but N-(2-aminoethyl)-glycine (AEG), the backbone of PNA, has been hypothesized to be an early form of genetic molecule for life on earth and is produced by cyanobacteria and is a neurotoxin. PNA was invented by Peter E. Nielsen (Univ. Copenhagen), Michael Egholm (Univ. Copenhagen), Rolf H. Berg (Risø National Lab), and Ole Buchardt (Univ. Copenhagen) in 1991. DNA and RNA have a deoxyribose and ribose sugar backbone, respectively, whereas PNA's backbone is composed of repeating N-(2-aminoethyl)-glycine units linked by peptide bonds. The various purine and pyrimidine bases are linked to the backbone by a methylene bridge (-CH2-) and a carbonyl group (-(C=O)-). PNAs are depicted like peptides, with the N-terminus at the first (left) position and the C-terminus at the last (right) position. Since the backbone of PNA contains no charged phosphate groups, the binding between PNA/DNA strands is stronger than between DNA/DNA strands due to the lack of electrostatic repulsion.
Nako Nakatsuka, Xinyu Zhang, Haiying Hu
Christian Heinis, Edward Will, Anne Sofie Luise Zarda, Alexander Lund Nielsen, Sevan Mleh Habeshian, Mischa Schüttel, Gontran Sangouard