L-notationL-notation is an asymptotic notation analogous to big-O notation, denoted as for a bound variable tending to infinity. Like big-O notation, it is usually used to roughly convey the rate of growth of a function, such as the computational complexity of a particular algorithm. It is defined as where c is a positive constant, and is a constant . L-notation is used mostly in computational number theory, to express the complexity of algorithms for difficult number theory problems, e.g.
Goldbach's conjectureGoldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4e18, but remains unproven despite considerable effort. On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII), in which he proposed the following conjecture: Goldbach was following the now-abandoned convention of considering 1 to be a prime number, so that a sum of units would indeed be a sum of primes.
SemiprimeIn mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes. The semiprimes less than 100 are: Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes: The semiprimes are the case of the -almost primes, numbers with exactly prime factors.
Additive number theoryAdditive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers.
Atle SelbergAtle Selberg (14 June 1917 – 6 August 2007) was a Norwegian mathematician known for his work in analytic number theory and the theory of automorphic forms, and in particular for bringing them into relation with spectral theory. He was awarded the Fields Medal in 1950 and an honorary Abel Prize in 2002. Selberg was born in Langesund, Norway, the son of teacher Anna Kristina Selberg and mathematician Ole Michael Ludvigsen Selberg. Two of his three brothers, Sigmund and Henrik, were also mathematicians.
Analytic number theoryIn mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem).