In theoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials have the same spectrum, apart from a possible eigenvalue of zero, meaning that the physical systems represented by the two potentials have the same characteristic energies, apart from a possible zero-energy ground state.
Consider a one-dimensional, non-relativistic particle with a two state internal degree of freedom called "spin". (This is not quite the usual notion of spin encountered in nonrelativistic quantum mechanics, because "real" spin applies only to particles in three-dimensional space.) Let b and its Hermitian adjoint b† signify operators which transform a "spin up" particle into a "spin down" particle and vice versa, respectively. Furthermore, take b and b† to be normalized such that the anticommutator {b,b†} equals 1, and take that b2 equals 0. Let p represent the momentum of the particle and x represent its position with [x,p]=i, where we use natural units so that . Let W (the superpotential) represent an arbitrary differentiable function of x and define the supersymmetric operators Q1 and Q2 as
The operators Q1 and Q2 are self-adjoint. Let the Hamiltonian be
where W''' signifies the derivative of W. Also note that {Q1,Q2}=0. Under these circumstances, the above system is a toy model of N=2 supersymmetry. The spin down and spin up states are often referred to as the "bosonic" and "fermionic" states, respectively, in an analogy to quantum field theory. With these definitions, Q1 and Q2 map "bosonic" states into "fermionic" states and vice versa. Restricting to the bosonic or fermionic sectors gives two partner potentials determined by
In supersymmetric quantum field theories with four spacetime dimensions, which might have some connection to nature, it turns out that scalar fields arise as the lowest component of a chiral superfield, which tends to automatically be complex valued.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Supersymmetry is the unique quantum extension of the symmetry principles of relativity.
This course offers a first but broad introduction covering the role of Supersymmetry in our understanding of bot
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics.
We present a systematic method to expand in components four dimensional superconformal multiplets. The results cover all possible N = 1 multiplets and some cases of interest for N = 2. As an application of the formalism we prove that certain N = 2 spinning ...
We investigate the extent to which the class of Dirac materials in two-dimensions provides general statements about the behavior of both fermionic and bosonic Dirac quasiparticles in the interacting regime. For both quasiparticle types, we find common feat ...
We use Lightcone Conformal Truncation to analyze the RG flow of the two-dimensional supersymmetric Gross-Neveu-Yukawa theory, i.e. the theory of a real scalar superfield with a DOUBLE-STRUCK CAPITAL Z(2)-symmetric cubic superpotential, aka the 2d Wess-Zumi ...