Summary
In statistics, a multimodal distribution is a probability distribution with more than one mode. These appear as distinct peaks (local maxima) in the probability density function, as shown in Figures 1 and 2. Categorical, continuous, and discrete data can all form multimodal distributions. Among univariate analyses, multimodal distributions are commonly bimodal. When the two modes are unequal the larger mode is known as the major mode and the other as the minor mode. The least frequent value between the modes is known as the antimode. The difference between the major and minor modes is known as the amplitude. In time series the major mode is called the acrophase and the antimode the batiphase. Galtung introduced a classification system (AJUS) for distributions: A: unimodal distribution – peak in the middle J: unimodal – peak at either end U: bimodal – peaks at both ends S: bimodal or multimodal – multiple peaks This classification has since been modified slightly: J: (modified) – peak on right L: unimodal – peak on left F: no peak (flat) Under this classification bimodal distributions are classified as type S or U. Bimodal distributions occur both in mathematics and in the natural sciences. Important bimodal distributions include the arcsine distribution and the beta distribution (iff both parameters a and b are less than 1). Others include the U-quadratic distribution. The ratio of two normal distributions is also bimodally distributed. Let where a and b are constant and x and y are distributed as normal variables with a mean of 0 and a standard deviation of 1. R has a known density that can be expressed as a confluent hypergeometric function. The distribution of the reciprocal of a t distributed random variable is bimodal when the degrees of freedom are more than one. Similarly the reciprocal of a normally distributed variable is also bimodally distributed. A t statistic generated from data set drawn from a Cauchy distribution is bimodal.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
MATH-444: Multivariate statistics
Multivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc
Show more
Related publications (124)
Related concepts (4)
Mode (statistics)
The mode is the value that appears most often in a set of data values. If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e, x=argmaxxi P(X = xi)). In other words, it is the value that is most likely to be sampled. Like the statistical mean and median, the mode is a way of expressing, in a (usually) single number, important information about a random variable or a population.
Probability distribution fitting
Probability distribution fitting or simply distribution fitting is the fitting of a probability distribution to a series of data concerning the repeated measurement of a variable phenomenon. The aim of distribution fitting is to predict the probability or to forecast the frequency of occurrence of the magnitude of the phenomenon in a certain interval. There are many probability distributions (see list of probability distributions) of which some can be fitted more closely to the observed frequency of the data than others, depending on the characteristics of the phenomenon and of the distribution.
Mixture distribution
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution.
Show more