Concept

Generalised circle

In geometry, a generalized circle, sometimes called a cline or circline, is a straight line or a circle. The natural setting for generalized circles is the extended plane, a plane along with one point at infinity through which every straight line is considered to pass. Given any three distinct points in the extended plane, there exists precisely one generalized circle passing through all three. Generalized circles sometimes appear in Euclidean geometry, which has a well-defined notion of distance between points, and where every circle has a center and radius: the point at infinity can be considered infinitely distant from any other point, and a line can be considered as a degenerate circle without a well-defined center and with infinite radius (zero curvature). A reflection across a line is a Euclidean isometry (distance-preserving transformation) which maps lines to lines and circles to circles; but an inversion in a circle is not, distorting distances and mapping any line to a circle passing through the reference circles's center, and vice-versa. However, generalized circles are fundamental to inversive geometry, in which circles and lines are considered indistinguishable, the point at infinity is not distinguished from any other point, and the notions of curvature and distance between points are ignored. In inversive geometry, reflections, inversions, and more generally their compositions, called Möbius transformations, map generalized circles to generalized circles, and preserve the inversive relationships between objects. The extended plane can be identified with the sphere using a stereographic projection. The point at infinity then becomes an ordinary point on the sphere, and all generalized circles become circles on the sphere. The extended Euclidean plane can be identified with the extended complex plane, so that equations of complex numbers can be used to describe lines, circles and inversions. A circle is the set of points in a plane that lie at radius from a center point In the complex plane, is a complex number and is a set of complex numbers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (7)
Symmetry in the Plane
Explores the modern definition of symmetry and its practical applications.
Intersection Numbers: Algebraic Counting Solutions
Explores intersection numbers for counting solutions to polynomial equations algebraically and their geometric significance in intersection theory and enumerative geometry.
Conformal Transformations
Explores conformal transformations, including holomorphic functions and Moebius transformations.
Show more
Related publications (3)

On Sets Defining Few Ordinary Circles

Frank de Zeeuw

An ordinary circle of a set P of n points in the plane is defined as a circle that contains exactly three points of P. We show that if P is not contained in a line or a circle, then P spans at least ordinary circles. Moreover, we determine the exact minimu ...
Springer2018

On some algebraic and extremal problems in discrete geometry

Seyed Hossein Nassajianmojarrad

In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer n3n\ge 3, we define e(n)e(n) to be the minimum positive integer such that an ...
EPFL2017

Convolution on the n-Sphere With Application to PDF Modeling

Ivan Dokmanic

In this paper, we derive an explicit form of the convolution theorem for functions on an n-sphere. Our motivation comes from the design of a probability density estimator for n-dimensional random vectors. We propose a probability density function (pdf) est ...
Institute of Electrical and Electronics Engineers2010
Related concepts (4)
Riemann sphere
In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved.
Cross-ratio
In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points A, B, C, D on a line, their cross ratio is defined as where an orientation of the line determines the sign of each distance and the distance is measured as projected into Euclidean space. (If one of the four points is the line's point at infinity, then the two distances involving that point are dropped from the formula.
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.