In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. Adjacent means that two regions share a common boundary curve segment, not merely a corner where three or more regions meet. It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubters remain.
The four color theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken after many false proofs and counterexamples (unlike the five color theorem, proved in the 1800s, which states that five colors are enough to color a map). To dispel any remaining doubts about the Appel–Haken proof, a simpler proof using the same ideas and still relying on computers was published in 1997 by Robertson, Sanders, Seymour, and Thomas. In 2005, the theorem was also proved by Georges Gonthier with general-purpose theorem-proving software.
In graph-theoretic terms, the theorem states that for loopless planar graph , its chromatic number is .
The intuitive statement of the four color theorem – "given any separation of a plane into contiguous regions, the regions can be colored using at most four colors so that no two adjacent regions have the same color" – needs to be interpreted appropriately to be correct.
First, regions are adjacent if they share a boundary segment; two regions that share only isolated boundary points are not considered adjacent. (Otherwise, a map in a shape of a pie chart would make an arbitrarily large number of regions 'adjacent' to each other at a common corner, and require arbitrarily large number of colors as a result.) Second, bizarre regions, such as those with finite area but infinitely long perimeter, are not allowed; maps with such regions can require more than four colors.