Le théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre ou celle des sommets d'un graphe planaire, en remplaçant la carte par un graphe dont les sommets sont les régions et les arêtes sont les frontières entre régions.
Trivialement, chacune des régions doit recevoir une couleur différente si les régions sont deux à deux adjacentes ; c'est le cas par exemple de la Belgique, du Luxembourg, de l'Allemagne et de la France dans une carte politique de l'Europe, d'où la nécessité des quatre couleurs dans le cas général. Par ailleurs, il ne peut exister cinq régions connexes deux à deux adjacentes (c'est la partie facile du théorème de Kuratowski).
Même si l'énoncé de ce théorème est élémentaire, on n'en connaît pas de preuve simple. Les démonstrations connues décomposent le problème en un nombre de sous-cas tellement important qu'elles nécessitent l'assistance d'un ordinateur pour être vérifiées.
Le théorème se généralise à certaines classes de graphes non planaires. Cependant, lorsqu'on généralise le problème à un graphe quelconque, il devient NP-complet de déterminer s'il est coloriable avec seulement quatre couleurs (ou même trois).
Le résultat fut conjecturé en 1852 par Francis Guthrie, intéressé par la coloration de la carte des régions d'Angleterre. La première mention publiée date toutefois de 1879. Deux premières démonstrations furent publiées, respectivement par Alfred Kempe en 1879 et Peter Guthrie Tait en 1880. Mais elles se révélèrent erronées ; les erreurs ont été relevées seulement en 1890 par Percy Heawood et en 1891 par Julius Petersen.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
vignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
thumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
thumb|upright|Raisonnement mathématique sur un tableau. Les mathématiques (ou la mathématique) sont un ensemble de connaissances abstraites résultant de raisonnements logiques appliqués à des objets divers tels que les ensembles mathématiques, les nombres, les formes, les structures, les transformations ; ainsi qu'aux relations et opérations mathématiques qui existent entre ces objets. Elles sont aussi le domaine de recherche développant ces connaissances, ainsi que la discipline qui les enseigne.
Explore le théorème de Markov, la liaison de Chernoff et les fondamentaux de la théorie des probabilités, y compris une bonne coloration, des graphiques à 2 couleurs et des événements rares.
The exploration of one-factorizations of complete graphs is the foundation of some classical sports scheduling problems. One has to traverse the landscape of such one-factorizations by moving from one of those to a so-called neighbor one-factorization. Thi ...
Let G = (V, E) be a simple loopless finite undirected graph. We say that G is (2-factor) expandable if for any non-edge uv, G + uv has a 2-factor F that contains uv. We are interested in the following: Given a positive integer n = vertical bar V vertical b ...
ELSEVIER2020
This paper studies sufficient conditions to obtain efficient distributed algorithms coloring graphs optimally (i.e. with the minimum number of colors) in the LOCAL model of computation. Most of the work on distributed vertex coloring so far has focused on ...